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AI and ML with OpenROAD: 

Some Possibilities!
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Design Optimization Lives in a Box

• Start to End: expensive! 

•O(year) for product

•O(weeks) for SP&R and Opt

• Goal: best possible End

• Constraint: stay in “Box”

{compute} 

X {licenses} 

X {people} 

X {weeks}

Start

End
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Designers always need more leverage!
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A. You need models to have predictions

B. You need predictions to leverage in exploration

C. What you can’t predict, you guardband

D. What you don’t explore, you leave on the table

E. C and D are bad for product quality and schedule

“Moore’s Law slowdown” → in an Era of Optimization

“Machine Learning in EDA”: Why

Kahng ECE 260C SP25
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• Predict
• Will RouteOpt finish with clean signoff, <1000 DRVs 

by tomorrow night?

• Classify
• Out of these 50 floorplans + budgets, which 3 should 

go into trial SP&R?

• Estimate
• How many hold buffers will tool eventually add into 

this post-CTS layout?

• Guide / advise
• What P&R tool setup/script will obtain the best QOR 

within next 36 hours? 

• More broadly: answer any question that is 

difficult for humans
• Google Brain, 2020:  “super-human macro placement” 

on arXiv

• See: Rich Sutton, “The Bitter Lesson”

• More trivially: regressions and image 

classifications (LSF, litho)

“Machine Learning in EDA”: What

Kahng ECE 260C SP25
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What’s Different (and Difficult) for AI/ML?

1. Changing abstractions, formats, and the design itself

LEF, DEF, .LIB, SVRF, UPF, CPM, APL, SPEF, SDC, GDS, .V, 

VHDL, .SP, ITF, TLU+, NXTGRD, PFM, QRCtech, SDF, CCS, 
LVF…

Kahng ECE 260C SP25
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LEF, DEF, .LIB, SVRF, UPF, CPM, APL, SPEF, SDC, GDS, .V, 

VHDL, .SP, ITF, TLU+, NXTGRD, PFM, QRCtech, SDF, CCS, 
LVF…

1. Changing abstractions, formats, and the design itself

2. Long chains of distinct, intractable discrete optimizations  

• “Practical optimization” = metaheuristics on top of metaheuristics

• Scale, multimodality, dynamism, diversity
→ 1000s of hidden commands and options in a commercial placer !

• Objectives are ad hoc

• Trajectories are chaotic

• Outcomes have distributions

What’s Different (and Difficult) for AI/ML?

Kahng ECE 260C SP25
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Outcomes Heavily Mediated by Heuristics!

• “ibm01” from ISPD-2002, “Bookshelf” format

• 12.7K instances

• FengShui ~2005; NTUplace3 ~2008; 
RePlAce ~2018

RePlAceFengShui5.1 NTUplace3

AlphaChip HumanRePlAce
(OpenROAD)

SA + “GWTW”

• “CT-Ariane133 X4”, protobuf format [link]

• 532 macros, 332K cells in TSMC 7nm

• AlphaChip 2024, SA/GWTW 1983/1994; 
RePlAce 2020-

“ibm01” thanks: Prof. Patrick Madden, Binghamton Univ. 

Kahng ECE 260C SP25

http://vlsicad.eecs.umich.edu/BK/
https://github.com/google-research/circuit_training/blob/main/docs/ARIANE.md
https://github.com/TILOS-AI-Institute/MacroPlacement/tree/march_updates
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LEF, DEF, .LIB, SVRF, UPF, CPM, APL, SPEF, SDC, GDS, .V, 

VHDL, .SP, ITF, TLU+, NXTGRD, PFM, QRCtech, SDF, CCS, 
LVF…

3. Loops are expensive 
(often, fatally so)

• Design process must 
“converge” both spatial 
embedding and performance

How?

1. Changing abstractions, formats, and the design itself

2. Long chains of distinct, intractable discrete optimizations  

• “Practical optimization” = metaheuristics on top of metaheuristics

• Scale, multimodality, dynamism, diversity
→ 1000s of hidden commands and options in a commercial placer !

• Objectives are ad hoc

• Trajectories are chaotic

• Outcomes have distributions

What’s Different (and Difficult) for AI/ML?

Kahng ECE 260C SP25



9

With Chained Chaotic Optimizations ?!?

3.4% Variation of Effective Clock Period

11% Variation of Total Cell Area
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Implications for Optimization in IC Design

• Predictions today are Constructive

• Quick-and-dirty, under the hood

• Optimizations today are Iterative

• “Construct by Correction”

• Need Fast Simulations to guide Optimization

• “Construct by Corrections …
… that are Correct by Construction”

AI and ML

to the rescue?

Kahng ECE 260C SP25
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Signoff in Design: Optimize Max, not Sum!

• Signoff is a defined business interface

• Establishes “Who pays for the scrap?”

• Golden, foundry-qualified tools perform 

signoff analyses and simulations

• Typically with very long batch runtimes

• Many design steps must optimize “max”

• Max timing path delay determines max frequency

• Max wiring congestion determines routing feasibility

• Inverse problems galore 

• Worst-case stimuli → e.g., “rogue wave in power grid”

• “Whack-a-mole”, “ping-pong” are in the lexicon of 

design → can new AI foundation models help?

Kahng ECE 260C SP25
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4-Stage “Roadmap” of ML in EDA

1. Mechanization and 

Automation

2. Orchestration of Search and 

Optimization

3. Pruning via Predictors and 
Models

4. From Reinforcement Learning 

through Intelligence
Huge space of tool, command, option 

trajectories through design flow

Kahng ECE 260C SP25
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No-Brainer: Shift Accuracy-Cost Tradeoffs

Tagline: “It’s Just Physics!”

Kahng ECE 260C SP25
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ML to Fix Timing Miscorrelation

Kahng ECE 260C SP25

UCSD, DATE-2014

D = non-signoff timer (e.g., in P&R tool)

T = “golden” timer (e.g., signoff-qualified)

• Can you explain the slack miscorrelation?

• What is the impact of the miscorrelation?

https://vlsicad.ucsd.edu/Publications/Conferences/311/c311.pdf
https://vlsicad.ucsd.edu/Publications/Conferences/311/c311.pdf
https://vlsicad.ucsd.edu/Publications/Conferences/311/c311.pdf
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“gt1-gt2”: ML to Erase Miscorrelation 

Can also erase 

miscorrelation 

between D, T

Artificial
Circuits
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New
Designs

MODELS
(Path slack, setup time, 

stage, cell, wire delays)
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• PBA (Path-Based Analysis) is less pessimistic 
but more expensive than GBA (Graph-Based 
Analysis)

• ML to predict PBA timing from GBA timing 
→ Better and faster outcomes from P&R, Opt

Predicting PBA from GBA

GBA Mode
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UCSD, ICCD18

https://vlsicad.ucsd.edu/Publications/Conferences/361/c361.pdf
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Timing at “Unobserved Corners”

STA at few known corners → predict 

timing at all unknown corners  

PCA: low-dimensional modeling task

Predicting missing delay values             

= matrix completion problem 

Kahng ECE 260C SP25

UCSD, DATE19

“It’s Just Physics!”

https://vlsicad.ucsd.edu/Publications/Conferences/369/c369.pdf
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• Many types
• Formal specs

• HDLs

• Graphs

• Hierarchies

• Tabular data

• Images  

• IC data characteristics
• Constantly changing

• technologies, designs, tools, …

• Non-standard forms (even, “Tower of Babel”)

• No massive redundancy

• Different shapes and scales

• No “Zipf’s Law”

• Is unsupervised learning even possible?

• Who owns, and who can use, what data? 
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Thanks: Igor Markov, Synopsys

A Call-Out: Semiconductor Design Data

Kahng ECE 260C SP25



19

• Proprietary

• Designs

• Technologies

• Design methods

• EDA tools

• Expensive

• E.g., design flows take weeks to run

• Closer to physics → harder to access

• Materials

• Equipment

• Process, Devices

• …

A Call-Out: Semiconductor Design Data

Kahng ECE 260C SP25
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https://slice-ml-eda.github.io/

Semiconductor Design Data: Well-Lamented Gaps

• Proprietary

• Designs

• Technologies

• Design methods

• EDA tools

• Expensive

• E.g., design flows take weeks to run

• Closer to physics → harder to access

• Materials

• Equipment

• Process, Devices

• …

Kahng ECE 260C SP25

https://slice-ml-eda.github.io/
https://slice-ml-eda.github.io/
https://slice-ml-eda.github.io/
https://slice-ml-eda.github.io/
https://slice-ml-eda.github.io/
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A Call to Action: Must Develop “Proxies” 
“if it can’t be shared, need a proxy !”

• Proprietary PDK (Process Design Kit) data

• Commercial EDA End-User License Agreements

• No benchmarking (!)

• Copyrighted command language → Tower of Babel

• report_timing, report_checks, 
report_timing_analysis, check_timing, … 

• Copyrighted report formats → more Tower of Babel

• ^ and v  vs.  r and f , ***  vs.  ===  , …

• Can’t share/upload ML data or models!

• Foundation Models will require 
Data, which will require Proxies !

• Tech files, device models, “safe names”,
design enablements / tool setups, 
sharable results and metrics, …

(“journey of a thousand miles …”)
Kahng ECE 260C SP25
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• Physics

• Logic

• Circuits

• Multimodal 

Er, EDA Foundation Models ?

“ML for CAD/EDA”, 2020 talk, paper “Foundation Models for CAD/EDA”, 202?
Kahng ECE 260C SP25

https://vlsicad.ucsd.edu/NEWS20/MLCAD-Kahng-v5-POSTED.pptx
https://vlsicad.ucsd.edu/Publications/Journals/j138.pdf
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Possibilities With OpenROAD

Kahng ECE 260C SP25

Have seen examples in lectures …
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•Lecture 1: CircuitOps
(ASU, Nvidia)

•Lecture 1: ChatEDA
(CUHK)

Examples: Lecture 1

Kahng ECE 260C SP25
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•Lecture 1: AutoTuner
(UCSD)

Examples: Lecture 1

Kahng ECE 260C SP25
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•Lecture 1: METRICS 
(UCLA, UCSD)

Examples: Lecture 1

Kahng ECE 260C SP25
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•Lecture 2: The PDN 
Chicken-Egg 
(Arm, UMN, UCSD)

•Critical cells want to be
near each other.
Supplying extra power 
to this hotspot will force
the cells apart.

•Can ML predict the
“convergence point”?

(What can/should the flow do with such a prediction?)

Other examples: useful skew vs. synthesis; multi-bit FF clustering vs. place/opt; …

Examples: Lecture 2

Kahng ECE 260C SP25
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•Lecture 13: BlobPlace (UCSD, POSTECH)

Examples: Lecture 13

Kahng ECE 260C SP25
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•Lectures 7, 15: Pin Access (UCSD)

Examples: Lectures 7, 15

Kahng ECE 260C SP25



30

•Lecture 12: RCX Model Creation 
(Athena/Nefelus)

Examples: Lecture 12

Kahng ECE 260C SP25
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ML Target #1: “Virtual Buffering”

• Motivation: Netlist changes during ERC fix, timing fix 
(+ MBFF clustering, CTS, scan stitch, hold fix, antenna 
fix, etc.)    how many netlists are there during P&R ?!?

• Topology changes require accesses to GPU memory 

→ slowdown of GPU-accelerated placers

• Goal: Predict future netlist changes, account for them 
during placement to avoid “buffer surprise”
• E.g., pre-allocate space that will be used by buffers, upsizes

Theme: Prediction for Prevention  (“doomed runs” etc.)

Comment 1:  What is the ACCURACY requirement?  E.g., costs of FP, FN

Comment 2:  “Acting on a prediction changes what is being predicted, so  
BE CAREFUL WHAT YOU ASK FOR (from ML)”  (“BCWYAF”)

Kahng ECE 260C SP25
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• Analytical placement = 

nonlinear optimization,   
sensitive to initial solutions

• Goal: reduce #iterations, 

improve placement QoR

ML Target #2: Placement Initialization

Theme: ML for Warm Start   e.g., as in BlobPlace’s seeded blob placement

Comment 1:  What are challenges? 

representation, embedding, model architecture, training, scalability,
generalization (transfer, fine-tuning, …) across designs and technologies,
data

Kahng ECE 260C SP25
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ML Target #3: Handoffs at Interstices

• Co-evolutions, Co-optimizations are often at arm’s length

• Interstices = opportunities for “Conditioning Magic” via ML

ISPD-2024 paper, slides

Netlist 

Tomograph

y
Placement 

Tomography

Themes: Initialization, TAT, Sampling 
from Chaos to Autotuning 
+ Modern Compute (cloud, multicore)

Comment 1: Key concept = “Tomography”

Kahng ECE 260C SP25

https://vlsicad.ucsd.edu/Publications/Conferences/404/c404.pdf
https://vlsicad.ucsd.edu/Publications/Conferences/404/c404.pptx
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Tomography = multiple cross-sectional views of a solid object

• IDEA: Use many quick tool (GPU, proxy) runs and parallel 
execution to extract multiple views/reports in one unit of time

Concept of “Tomography”  

RTL Tomography:

Multiple synthesis runs for quick RLT 

analysis and synthesis knobs tuning

Netlist Tomography:

Multiple placement runs for quick 

netlist analysis and placement knobs 

tuning

Placement Tomography:

• Multiple early global routing runs for 

rapid placement congestion analysis 

and routing‐blockage tuning

RTL

Synthesis

Placement

CTS

Route

SP&R Flow

Kahng ECE 260C SP25
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• Placement Tomography: Use routing blockage with varying 
routing-resource values → generate multiple congestion views

• ICCAD24 method has three main elements
• DRVNet model: predicts layer-wise DRV hotspots

• BlkgComp model: compares two routing blockage configurations

• RL Agent: uses DRVNet, BlkgComp to sample routing blockages for #DRVs 
mitigation

Placement Tomography (ICCAD24) Link

Kahng ECE 260C SP25

https://vlsicad.ucsd.edu/Publications/Conferences/411/c411.pdf
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• Multiple views of a netlist
• Slightly perturb the floorplan or SDC
• Run each through place or placeopt

• Analyze placement runs
• Instances in congested regions
• Failing endpoints

• Set available placement knobs 
• Placement blockage
• Cell padding
• Soft guides
• …

• How about RTL tomography?

Can Also Try Netlist or RTL Tomography!

NOVA GF12

CA53 GF12

Kahng ECE 260C SP25
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ML Target #4: Evolution in Optimizers

Theme: “Parallel Problem Solving from Nature”
Learn-to-Optimize, Adaptive Learning, Multi-fidelity BO, 
Evolutionary Optimization, Reinforcement Learning, … (+ metaheuristics)Kahng ECE 260C SP25

• Example/Observation: global routing solution (route guides) 
sets the detailed router’s initial solution space

• Can we create “good” GR solutions from “not-good” solutions?

• UCSD “genetic / adaptive multi-start metaheuristic” using 
patching-based hybridization 

Gen 6

Gen 11

50 GR seeds x 
5 DR seeds

#DRCs

ISPD19_test5

Post-Route #DRCs Distribution

AMS, CAMS

https://vlsicad.ucsd.edu/Publications/Journals/j15.pdf
https://vlsicad.ucsd.edu/Publications/Journals/j30.pdf
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ML Target #5: “The Analog Hole”

• Field solvers, golden tools, patterns, … Can we skip this?

• Idea: build OpenRCX table from massive post-P&R def, spef

Theme: “It’s Just Physics” could mean “No More Secrets” !!!  

Comment 1: There is massive data in standard tool reports, outputs

Comment 2: ML can help “bypass” PDK data for material, device, BEOL …

Kahng ECE 260C SP25
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AI, ML (+ OpenROAD): Some Takeaways

• What’s Different (and Difficult)
• Layers of hierarchy, abstractions and boundaries in any given instance of “design problem”

• “Construct by correction” in chained chaotic, discrete (+ high-stakes) optimization (how to use predictions?)

• Extreme multiscale in space, time

• Infinite variety of possible layouts, shapes, constraints, designs 

• Data is unavailable → proxies needed  (+ privacy-preservation, obfuscation, trust/verification etc.)

• Many Opportunities
• Full-stack proxy data generation will unblock many next steps !    (“#1 with a bullet”)

• “Stubs and supports” for physical modeling and design of digital twins, 3D heterogeneous integration

• Fast and accurate optimization of multiphysics behavior without detailed PDE simulations 

• Leverage datasets, insights, models developed for other engineering and design domains?

• Pathfinding (from materials to systems) into the “beyond-everything” future

• [Opportunities in RTL-to-GDSII: see Lecture Slides, Example ML Targets, and Themes!]

• Trajectories of Connecting Silos
• Materials + Mechanical sciences + EE/CS + Optimization + AI

• Electrical-Thermal → Mechanical → Aging/Reliability/Noise → …

• Digital (HW + SW) → Analog → Mechanical → (hydraulic, thermal, magnetic, fluidic) → …

Kahng ECE 260C SP25
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