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Some Possibilities!
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Design Optimization Lives in a Box

Start

l?\“: Kahng ECE 260C SP25

- Start to End: expensive!

*O(year) for product
*O(weeks) for SP&R and Opt

« Goal: best possible End

 Constraint: stay in “Box”
{compute}
X {licenses}
X {people}
X {weeks}

Designers always need more leverage!




“Machine Learning in EDA”: Why

A. You need models to have predictions

B. You need predictions to leverage in exploration
C. What you can'’t predict, you guardband

D. What you don’t explore, you leave on the table

E. C and D are bad for product quality and schedule

“Moore’s Law slowdown” - in an Era of Optimization
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“Machine Learning in EDA”: What

* Predict
* Will RouteOpt finish with clean signoff, <1000 DRVs
by tomorrow night?

* Classify

* Out of these 50 floorplans + budgets, which 3 should
go into trial SP&R?

* Estimate
* How many hold buffers will tool eventually add into
this post-CTS layout?

* Guide / advise
* What P&R tool setup/script will obtain the best QOR
within next 36 hours?
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What’s Different (and Difficult) for AI/ML?

1. Changing abstractions, formats, and the design itself

System
@ Specification
; Architectra
Design ;
Funclion;! Design
v and Logic Design _'
Circuit Design ~ /
i
v Physical Verification 1
e
g:c Layout Post k!
Processing X
E
7 Fab"‘f“"" LEF, DEF, LIB, SVRF, UPF, CPM, APL, SPEF, SDC, GDS, .V,
iq Packaging VHDL, .SP, ITF, TLU+, NXTGRD, PFM, QRCtech, SDF, CCS,
| and Testing
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What’s Different (and Difficult) for AI/ML?

Changing

LEF, DEF, LIB, SVRF, UPF, CPM, APL, SPEF, SDC, GDS, .V,

l Packaging VHDL, .SP, ITF, TLU+, NXTGRD, PFM, QRCtech, SDF, CCS,
) LVF...

2. Long chains of distinct, intractable discrete optimizations

* “Practical optimization” = metaheuristics on top of metaheuristics

* Scale, multimodality, dynamism, diversity
= 1000s of hidden commands and options in a commercial placer !

* Objectives are ad hoc
* Trajectories are chaotic

¢ QOutcomes have distributions

l‘gn Kahng ECE 260C SP25



Outcomes Heavily Mediated by Heuristics!

FengShui?. . ‘o » * “ibm01” from ISPD-2002, “Bookshelf” format

o | e SN Py o * 12.7K instances
i « FengShui ~2005; NTUplace3 ~2008;
RePlAce ~2018

¢ “CT-Ariane133 X4”, protobuf format [link]
¢ 532 macros, 332K cells in TSMC 7nm

* AlphaChip 2024, SA/GWTW 1983/1994;
RePlAce 2020-

SA + “GWTW” RePlAce
(OpenROAD)

“ibm01” thanks: Prof. Patrick Madden, Binghamton Univ.
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http://vlsicad.eecs.umich.edu/BK/
https://github.com/google-research/circuit_training/blob/main/docs/ARIANE.md
https://github.com/TILOS-AI-Institute/MacroPlacement/tree/march_updates

What’s Different (and Difficult) for AI/ML?

3. Loops are expensive
(often, fatally so)
» Design process must

“converge” both spatial
embedding and performance

Logic “Netlist”

e<n Kahng ECE 260C SP25 8



With Chained Chaotic Optimizations ?!?
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Implications for Optimization in IC Design

* Predictions today are Constructive

* Quick-and-dirty, under the hood

» Optimizations today are lterative

* “Construct by Correction”

Logic “Netlist”

Floorplan

%%,
%

Final
Route

Placement

Catechism:

A. You need models to have predictions

B. You need predictions to leverage in exploration
C. What you can’t predict, you guardband

D. What you don't explore, you leave on the table

ST
*d "’“fhwd

How? Quait, 4

Accuracy

* Need Fast Simulations to guide Optimization

* “Construct by Corrections ...

... that are Correct by Construction”

l;‘.?;llj Kahng ECE 260C SP25

>

............. 5-10%

g2 T8 X faster ' better

~—

Al and ML
(The Dream) to the rescue?

»

Compute, Time'
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Signoff in Design: Optimize Max, not Sum!

System
:[:’» Specification

- rehitetural « Signoff is a defined business interface §-
ENTITY test Design
et | Eunctionsl Desigh * Establishes “Who pays for the scrap?”
v and Logic Design
v
"R2%| | GroutDesin * Golden, foundry-qualified tools perform

| EEETE signoff analyses and simulations

Physical Veriication]
and Signoff

 Typically with very long batch runtimes

Layout Post

@@ . * Many design steps must optimize “max”
Fabrication
ﬁ* -~ * Max timing path delay determines max frequency
— and Testing

+ Max wiring congestion determines routing feasibility ==

* Inverse problems galore
* Worst-case stimuli > e.g., “rogue wave in power grid”

* “Whack-a-mole”, “ping-pong” are in the lexicon of
design - can new Al foundation models help?

Li:!'-;;: Kahng ECE 260C SP25 11



4-Stage “Roadmap” of ML in EDA

Flow Start ¢

1. Mechanization and
Automation

............

2. Orchestration of Search and
Optimization

3. Pruning via Predictors and |
Models

4. From Reinforcement Learning Erd

through Intelligence

Huge space of tool, command, option
trajectories through design flow

l?\;llj Kahng ECE 260C SP25 12



No-Brainer: Shift Accuracy-Cost Tradeoffs

100%

(100-x)%

Accuracy

Cost / Runtime

>

Tagline: “It’s Just Physics!”

l;‘.?;llj Kahng ECE 260C SP25 13



ML to Fix Timing Miscorrelation

UCSD, DATE-2014

0ol A

D, Path Slack (ns)
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Y

-

-0.4 -0.2

T, Path Slack (ns)

D = non-signoff timer (e.g., in P&R tool)
T ="“golden” timer (e.g., signoff-qualified)

« Can you explain the slack miscorrelation?

lﬁ; Kahng ECE 260C SP25

 What is the impact of the miscorrelation?



https://vlsicad.ucsd.edu/Publications/Conferences/311/c311.pdf
https://vlsicad.ucsd.edu/Publications/Conferences/311/c311.pdf
https://vlsicad.ucsd.edu/Publications/Conferences/311/c311.pdf

“gt1-gt2”: ML to Erase Miscorrelation

‘ Outliers INCREMENTAL If error>
(data points) threshold

Can also erase
miscorrelation |-
between D, T

_ MODELS
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Predicting PBA from GBA uCsD, IcCD18

* PBA (Path-Based Analysis) is less pessimistic
but more expensive than GBA (Graph-Based

Analysis)
* ML to predict PBA timing from GBA timing
—> Better and faster outcomes from P&R, Opt

~
frr | 1 “ @ PBA - GBA Slack Gain

1A
ULB DWW . e
> Q40 ¢
| GBAMode 2%
=3 (8]
3 30
=25
Ve 9 20
er1 |1 una g5
I — &
Fr2 PBA Mode 0
0 5000 10000 15000 20000 25000 30000

Endpoint Index

Lﬁul: Kahng ECE 260C SP25 16


https://vlsicad.ucsd.edu/Publications/Conferences/361/c361.pdf

nnnnnn

.

n columns : (N-n) columns
M ¥ e b e /dec_viterbi netcard leon3mp megabm
S T SN -

Timing at “Unobserved Corners” ucso, pate1

ooooooooooooooo

nnnnnnnnnnnnnnnnnnnnnnnnnn

STA at few known corners > predict
timing at all unknown corners

incipal component

PCA: low-dimensional modeling task

- “It’s Just Physics!”

e<n Kahng ECE 260C SP25 17


https://vlsicad.ucsd.edu/Publications/Conferences/369/c369.pdf

A Call-Out: Semiconductor Design Data

/I Memory Write Block
/I Write Operation : Whenwe_0=1,¢cs_0=1
always @ (address_@ OF cs_@ OF we_0 Of data_e

* Many types

* Formal specs

OF address_1 OF cs_1 OF we_1 OF data_1)

° begin : MEM_WRITE
HDLS if ( cs_0 && we_e ) begin

° mem[address_8] <= data_0;
GraphS end else if (cs_1 && we_1) begin

mem[address_1] <= data_1;
end
end

e Hierarchies
* Tabular data
* Images

* IC data characteristics
 Constantly changing
* technologies, designs, toals, ...
* Non-standard forms (even, “Tower of Babel”)
* No massive redundancy
* Different shapes and scales
* No “Zipf's Law”

* Is unsupervised learning even possible?
* Who owns, and who can use, what data?

Thanks: Igor Markov, Synopsys

lﬁ; Kahng ECE 260C SP25 18



A Call-Out: Semiconductor Design Data

* Proprietary
* Designs
* Technologies
* Design methods
» EDA tools

* Expensive
* E.g., design flows take weeks to run

* Closer to physics - harder to access
* Materials
* Equipment
* Process, Devices

Lﬁul: Kahng ECE 260C SP25
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Semiconductor Design Data: Well-Lamented Gaps

* Proprietary
* Designs
* Technologies
* Design methods
» EDA tools

* Expensive

* E.g., design flows take weeks to run

* Closer to physics = harder to access

* Materials
* Equipment
* Process, Devices

l‘gn Kahng ECE 260C SP25

“Al Flywheel”
More users =) More data 3 Better Al

c Better products :

Frictionless reproducibility (FR) [Donoho, 2024]

Benchmarking
|

Data sharing Code sharing Competitive challenges

/ Al open infrastructure

Proposed SLICE infrastructure "\



https://slice-ml-eda.github.io/
https://slice-ml-eda.github.io/
https://slice-ml-eda.github.io/
https://slice-ml-eda.github.io/
https://slice-ml-eda.github.io/

A Call to Action: Must Develop “Proxies”

“if it can’t be shared, need a proxy !”

* Proprietary PDK (Process Design Kit) data c;sfn 5
* Commercial EDA End-User License Agreements
» No benchmarking (!) AL
« Copyrighted command language > Tower of Babel \
. report_t!m!ng, report_.checks, o x * Realn
report_timing_analysis, check_timing, ... 0 eal-ness
* Copyrighted report formats 2> more Tower of Babel Atfical Real

e Aandv vs. randf, ™ vs, === | ...

e Can’t share/upload ML data or models!

Democratization Requires Proxies I
*If it is not sharable, need a proxy! s TARIEY. i
« Foundation Models will require — ]
i i i . ASIC! Noromre s | "f
Data, which will require Proxies ! | Good ey s § 208
. . « ”» ",: e:i =] (- :a. e I T
* Tech files, device models, “safe names”, P T T e
design enablements / tool setups, T Jopersouss)
sharable results and metrics, ... B
(‘journey of a thousand miles ...”) o ——

e<n Kahng ECE 260C SP25 21



Er, EDA Foundation Models ?

* Ph SICS Towards Foundation Models for Scientific Machine Learning:
y Characterizing Scaling and Transfer Behavior

H Shashank Subramanian Peter Harrington Kurt Keutzer
[ ] Log |C shashanksubramanian@Ibl.gov pharrington@lbl gov keutzer@eecs berkeley.edu
Lawrence Berkeley National Lab Lawrence Berkeley National Lab UC Berkeley
. . Wahid Bhimji Dmitriy Morozov Michael W. Mahoney
[ ] ‘ | rCu | t S whhimji@Iblgov dmorozov@lblgov mmahoney@stat berkeley.edu
Lawrence Berkeley National Lab Lawrence Berkeley National Lab LBNL, ICSL and UC Berkeley
Amir Gholami

* Multimodal
ICSL, UC Berkeley

MLDA
EDA2.0 222
evolutionary,
PPSN
The Road oper
source
Ahead autotuning
I I Sampllng nonconvex
GNNs optimization,
transfer SGD
learning clustering
0 transformers
reinforcement )
learning embedding 7 1
: end-to-end
discrete and
continuous manifold
optimization

privacy-preserving

data
cloud-scaling
d "
e EEE federated,
distributed

benchmarking

|
ML and CAD

“ML for CAD/EDA”, 2020 talk, paper “Foundation Models for CAD/EDA”, 2027
uw<n Kahng ECE 260C SP25 29


https://vlsicad.ucsd.edu/NEWS20/MLCAD-Kahng-v5-POSTED.pptx
https://vlsicad.ucsd.edu/Publications/Journals/j138.pdf

Possibilities With OpenROAD

“Machine Learning in EDA”: Why

“Machine Learning in EDA”: What

A. You need models to have predictions

B. You need predictions to leverage in exploration
C. What you can't predict, you guardband

D. What you don’t explore, you leave on the table
E. C and D are bad for product quality and schedule

“Moore’s Law slowdown” = in an Era of Optimization

2 aiing ECE 260C 5F25

e ——

* Predict

by tomorrow night?

* Classify
* Out of these 50 floorplans + budgets, which 3 should
go into trial SP&R?
* Estimate
* How many hold buffers will tool eventually add into
this post-CTS layout?
* Guide / advise

* What P&R tool setup/script will obtain the best QOR
within next 36 hours?

Have seen examples in lectures ...

lﬁh Kahng ECE 260C SP25
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Examples: Lecture 1

*Lecture 1: CircuitOps
(ASU, Nvidia)

e Lecture 1: ChatEDA
(CUHK)

= Kahng ECE 260C SP25
LTS

OpenROAD as an ML for EDA “Playground”

Verilog OpenROAD Enables an ML for EDA playground
+ libraries, RTL to GDS flow:
ccostraints logieSynthesis ~_ 5 °  User friendly data formats
| = * Standard ML-friendly data representation formats
3 Floorplanning — S
| S * Python APIs on existing EDA tools
= Placement — § * Enable data generation in ML-friendly format
+ 3
§ ——  ClockTree Synthesis  — 5 ° Callbacks and EDA database writebacks
& ! it from the ML environment
-E Global and Detailed ,‘i * Node and edge transformation to automatic EDA
B\ Routing 8 tool python API translation for novice EDA tool
l users
GDsII final Layout Finishing %
layout
UCSD ece 260C.  Thanks to: Prof. Vidya Chhabria, ASU.

LLM-based EDA Agent: ChatEDA

#1. User Requirement

For the design named “aes” on the platform “asap7”, please perform synthesis with a
clock period of 5, followed by floorplan with a core utilization of 70%. Then, execute

placement with a density of 0.8. Next, proceed with CTS to fix 40% of violating paths.
Finally, evaluate the performance after routing using “power” metric.

)
task1: sl up the EDA look
unc: set upd

P
ko |
platiorm, “asap?*

1 |
pertorm wynihenss
\mc o upnireas)

“Bock pro: s

task?; onocuto Hoorplan
Aunc: Hoorpkany
g

core, wtilzation: 70
taskd; perform placement
no: placemor)

gy
density; 0.8 4

| w2 Tk Planaing

N
louk5; paform CTS
fonc. 1w
s
o, parcent: 40

#3: Srigt Geserstion
¢ i
)

O TR W
L e s ter T, St asT)

¥ Pection spfihisis
083, Cun_3yHIhes s (C1och_perodes)

¢ Liste riosigtm

1ok
fur: global_reasied
dotail_route)
{
1087 ovaluation
nc: get_metric)

# Do torn wl
et N "

# Pirtien 15
00, <15 (001w Gt

¢ Natn o

osa.glemal_rotel)
o ket

£ LIRE Ve frrainie AR ToNing
Perfarsance » ese.get_netrici rete”,  (paver)|

A

UCSD ece 260¢.  Thanks to: Prof. Bei Yu, CUHK — see héfps://andu

£2308.10204.

Workflow
1. (user) natural language input
3. ChatEDA) script generation
4. (OpenROAD) task execution
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Examples: Lecture 1

Flow Parameter AutoTuner — Architecture

*Lecture 1: AutoTuner No-Human-in-Loop oo || oo |
( U C S D ) 1 optlon 2 Paralll execution

e | option 2

Parameter config =
input parameter AutoTuner Pick hyperparameter sets
name, range, (Ray/Tune) based on config / results
step, type 1

- N The RTL-10-GDS Parse picked set to form

Searching algorithm process f3 RTL-to-GDS tool runscript

(switchable) automatically

d in parallel
objective function
Collect METRICS2.1 json
Ray/Tune options
#itrials, #cores, etc. Evaluate results
UCSD ece 260c.

TensorBoard Visualization: SkvWater 130HD, ibex

* GUI integration with TensorBoard
» Score results versus Wall Time

User-defined Dots = trials
Score 4 e .t N . Default flow score = 1,174,346

Qur Best Score = 855,373
(370 trials in total 500 #trials)
(less is better)

4

Improvement
WL 1003801um — 843258um (-16%)
] | Wall Time | Effective CP 20.935ns — 16.185 ns (-23%)
Total power 0.024 W— 0.0133 W (-45%
? UCSD ece 260c. € )
- Kahng ECE 260C SP25
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Examples: Lecture 1

*Lecture 1: METRICS
(UCLA, UCSD)

“METRICS”

(DACO00, ISQEDO01)

The METRICS Initiative

Infrastnuctre Recent Updates
Pty

Publications

L G reraors L Lsa8) i s June 001 GSRC mokop
Codes ‘» Worksbop gotes for METRICS discussion at June 2001 GSRC wevkslop

Theses. o enbled by METRICS Systemm #95

Links. * DACK Budvofa-Fearher mesting susmacy (Juae 12. 2002) 88

f=

o e
+ METRICS 1.0 (1999; DACO0, ISQEDO1)
» “Measure to Improve” http://visicad.ucsd.edu/GSRC/metrics
+ METRICS 2.0 (WOSET-2018) was proposed as an update of METRICS 1.0

UCSD ece 260c.
-

METRICS2.1: Standard Naming ! cccises comicee cese seroise seniericsnna

- Problem: “Tower of Babel” (names, formats that are all different and
proprietary)

= Solution: “METRICS”
+ General and extensible
+ Syntax and semantics to support future addition of new metrics

+ No ambiguity!!!
+ Any desired measurement must map to a unique METRICS2.1 metric
+ Every METRICS2.1 metric must map to a unique interpretation as a measurement
+ Two-way mapping is crucial to avoid future confusion

- Can also capture the same metric at different stages of the design flow
- Free, open and frictionless — agnostic to EDA provider

UCSD ece 260c.

= Kahng ECE 260C SP25
LTS

METRICS21 Examples https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML

Sample metrics

Metric Description

timing _setup__wns
timing__setup__wns__clock.clk_a

Setup worst negative slack in the design

Setup worst negative slack for clock “clk_a” in

the design
timing__setup _wns__analysis_view:s | Setup worst negative slack for analysis view
low “slow”

power_total Total power consumption

Total leakage power

power _leakage _clock Total leakage power in the clock network

Many applicafions: data for machine learning, CI/CD infrastructure for software quality, ...
UCSD ece 260c.
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Examples: Lecture 2

. Template-based PDN Synthesis in Floorplan and Placement _
[ J
LeCtu re 2 . The PDN Using Classifier and CNN Techniques

.
C h I C ke n = E g g Vidya A. Chhabria', Andrew B. Kahng?, Minsoo Kim?, Uday Mallappa®, Sachin S. Sapatnekar', and Bangqi Xu?

E | | M N l 'C S D 'Universuy of Minnesota; "Universny of California, San Diego
( rl n ’ ) )

pdngen Improvements / Problem Statements

e Automatic connectivity rules (add_pdn_connect)

T4 o Create rules automatically for defining grid connectivity based on layers
¢ Crltlcal Cel IS Want tO be used, instances present, etc.
e Edge connectivity

near eaCh Other- o Enable the power grid to connect to edge ports for macros, right now

this is only possible on pad cells and standard cells, for macros we only

S u pplyi ng extra powe r connect from the top which requires macros use lower metals for power

and routing. This is not a huge problem in nodes with a large number of

to th iS hOtS pot Wi ” fo rce metal layers, but for sky130, ihp130, etc, this imposes a large penalty.

# o Power grid reinforcement (eco power grid)

the Cel IS apart_ o Later in most flows, after detailed placement, it may be possible to

determine if additional wires are needed to ensure IR drop stays within
limits based on the power requirements of those areas. On the opposite
side, it maybe possible to prune the grid if IR drop is not an issue and
free up routing resources. [cf. https://arxiv.org/abs/2110.14184]

Automatic power arid definition (hard

° Can M L pred ict the * = Given an IR drop goal, create a power grid that meets this requirement

based on the parasitic resistances and estimated power (either from

“co nve rge nce pOi nt”? placement or good guesses)

2 ohnpecesoc sras 40

(What can/should the flow do with such a prediction?)

Other examples: useful skew vs. synthesis; multi-bit FF clustering vs. place/opt; ...

= Kahng ECE 260C SP25 o7
LTS



Examples: Lecture 13

*Lecture 13: BlobPlace (UCSD, POSTECH)

Effect of seeded placement

“Oracle” clusters — do they exist?

* “Oracle’ clustering: hypothetical “optimal”
clustering = generates “best” BlobPlace sol.

* “Is there a clustering of a netlist that can lead
the “best” final placement ?” — Bodhi

* Spatial proximity ?
* Timing paths ?

* Avoid hot spots ?
*Or...7

* Amenable to ML if these
clusters do exist!

13;, Kahng ECE 260C SP25 o

* Design: Ariane (NG45)
* Flat placement (RePlAce): 440 iterations, HPWL =
171438951, GP runtime = 21 seconds

= Kahng ECE 260C SP25
LTS
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Examples: Lectures 7, 15

Cluster-Based Access Pattern Selection

*Lectures 7, 15: Pin Access (UCSD) | &

« Sort instances in the cluster according to x coordinate of the
lower-left corner

+ Graph construction

- Vertex = access pattern
+ Shortest path from s to t is the best pattern combination
ML for Pin Access Analysis? || 7 e
: - — — IR =
* Pin accessibility prediction (PAP) : pattern recognition o @
* Predict DRV occurrences due to bad pin accessibility [YuFCHT20ISPD] + Similar as previous formulation
* “Close the loop” : use PAP for placement refinement * No fteration
* Pin access generation : pattern generation S =

* (Can we learn the pin access pattern from well-established tools ?
* Try Generative Adversarial Network (GAN) or diffusion models ?

“Close the loop”: replace the default pin access engine in OpenROAD

b Meudipin O Memilpin 8 Metal?

Reraied abuameni ocll combmatons.
i Abeatowa ool ionibuatens
o b
. ,
H Y
\ _—
o
gl |

. - . L . Feature extraction
Pin accessibility evaluation for €2 considering abutting cells (pixel representation) 5

<
(L]

= Kahng ECE 260C SP25 29
LTS



Examples: Lecture 12

*Lecture 12: RCX Model Creation

(Athena/Nefelus)

(2.5D) Extraction Model Creation

OpenRCX Pattern E

* Determine the characteristics of the process from the foundry
technology information (e.g. itf or ict file)
® Layer specs, wire shape, dielectrics stack, WEE tables, Thickness
tables, Rho tables, ...
* Create a large number of patterns of interconnect and
transistor-level test structures
* Interconnect-level test structures differ from transistor-level
structures
° Run each pattern through a golden reference extractor
* Field solver requires proper shape, enlargements, thickness and
dielectrics
* Based on golden reference results, build extraction models

* Verify model results versus test results and design layouts

Thanks: Dimitris Fotakis and David Overhauser

E Kahng ECE 260C SP25 27

= Kahng ECE 260C 5P25
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Thanks: Dimitris Fotakis and David Overhauser

Measure
CC_MC OC
CC_MC_and

= Kahng ECE 260C SP25
LTS
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ML Target #1: “Virtual Buffering”

* Motivation: Netlist changes during ERC fix, timing fix
(+ MBFF clustering, CTS, scan stitch, hold fix, antenna
fix, etc.) how many netlists are there during P&R ?1?

* Topology changes require accesses to GPU memory
- slowdown of GPU-accelerated placers

* Goal: Predict future netlist changes, account for them
during placement to avoid “buffer surprise”
* E.g., pre-allocate space that will be used by buffers, upsizes

Theme: Prediction for Prevention (“‘doomed runs” etc.)
Comment 1: What is the ACCURACY requirement? E.g., costs of FP, FN

Comment 2: “Acting on a prediction changes what is being predicted, so
BE CAREFUL WHAT YOU ASK FOR (from ML)” (“BCWYAF’)

= Kahng ECE 260C SP25 31
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ML Target #2: Placement Initialization

6

® Analytical placement = ;
nonlinear optimization, ‘

” Z
z e
(1]
(=]

sensitive to initial solutions*’ :

Initial Stage

® Goal: reduce #iterations, - 3
Improve placement QOR O 100 2éo#ltaéigti0::160 s00 s00 %% 100 26O#It3e6roatio£:160 500 600

0.61Initial Stage

|
|
|
|
|
|
|
0.4 :
|
|
|
|
|
1

Theme: ML for Warm Start e.g., as in BlobPlace’s seeded blob placement

Comment 1: What are challenges?
representation, embedding, model architecture, training, scalability,
generalization (transfer, fine-tuning, ...) across designs and technologies,

data
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ML Target #3: Handoffs at Interstices

® Co-evolutions, Co-optimizations are often at arm’s length
® Interstices = opportunities for “Conditioning Magic” via ML
Co-optimizations “Magic”

* Netlist — Backend * Netlist
Hierarchy — Floorplan Netlist Partitioning

Netlist * Floorplan — SP&R « Block shaping + boundaries
Tomograph . Synthesis — P&R « Placement screens
Placement ° Place — Route  Route screens

Tomography ° GRoute — DRoute » Route guides

« Corners + enapoint SDCs
« Constraints

Themes: Initialization, TAT, Sampling °* Tool/engine recipes

from Chaos to Autotuning o
+ Modern Compute (cloud, multicore)

Comment 1: Key concept = “Tomography” ISPD-2024 paper, slides

= Kahng ECE 260C SP25 13
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https://vlsicad.ucsd.edu/Publications/Conferences/404/c404.pdf
https://vlsicad.ucsd.edu/Publications/Conferences/404/c404.pptx

Concept of “Tomography”

Tomography = multiple cross-sectional views of a solid object

® IDEA: Use many quick tool (GPU, proxy) runs and parallel
execution to extract multiple views/reports in one unit of time

SP&R Flow

RTL Tomography:
RTL Multiple synthesis runs for quick RLT
analysis and synthesis knobs tuning

\ 4

Netlist Tomography:

Synthesis Multiple placement runs for quick
netlist analysis and placement knobs
2 tuning

Placement Tomography:

Fleemelnt » Multiple early global routing runs for
rapid placement congestion analysis
\ 4 . .
and routing-blockage tuning
CTS
\ 4
Route
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Placement Tomography (ICCAD24) ...

* Placement Tomography: Use routing blockage with varying
routing-resource values - generate multiple congestion views

Value: 100/ | Value: 95° ‘ Value: 90 l Vawa: 85"

ST lg

Value: 80 7 Value: 75 Value; 70 ‘

o Loo; W= il N
5 . ol

* ICCAD24 method has three main elements
* DRVNet model: predicts layer-wise DRV hotspots
* BlkgComp model: compares two routing blockage configurations
* RL Agent: uses DRVNet, BlkgComp to sample routing blockages for #DRVs

mitigation - . T WL WNS | TNS | Power
9 Tech | Design | Method | #DRV (mm) (rs) (ns) (mW)
No E!kg 1,242 100 0,562 -782 10040
NOVA Human 403 0.994 -0.655 707 0.994
Ours 442 0.990 -0.475 -186 0.994
No Blkg 1,739 LO00 | -0.583 -632 1.000
GF12 LDPC Human 345 0.990 -0.472 =G4 09580
Curs 346 0.990 -0.438 -717 0.980
No F‘p!kg 3,316 1.000 -0.369 -1,495 10040
CAS53 Human Q432 0992 -0.615 -783 0986
lﬁh Kahng ECE 260C SP25 Ours Q02 0.991 -0.454 -6G96 0986 35



https://vlsicad.ucsd.edu/Publications/Conferences/411/c411.pdf

Can Also Try Netlist or RTL Tomography!

 Multiple views of a netlist r—
* Slightly perturb the floorplan or SDC

* Run each through place or placeopt

* Analyze placement runs

* Instances in congested regions
* Failing endpoints

* Set available placement knobs
* Placement blockage
* Cell padding
* Soft guides

®* How about RTL tomography?

= Kahng ECE 260C SP25
LTS




ML Target #4: Evolution in Optimizers

® Example/Observation: global routing solution (route guides)
sets the detailed router’s initial solution space

® Can we create “good” GR solutions from “not-good” solutions?
® UCSD “genetic / adaptive multi-start metaheuristic” using

patCh Ing'based hybrldlzatlon Post-Routing #DRCs Distribution
Post-Route #DRCs Distribution ispd19_tes.tS -
ISPD19_test5 Z 984000 | o oo % me A ~1%
0.12 =l e Genll obe"e .
[ ] ...5#

010 Gen11 %982000 .::2:.::.‘: .,
008 % ’" =38, W:- o‘..-'. o
§ ' Gen 6 S 980000 K ‘.f. -
5 0.06 50 GR seeds x g A 0.08% ko So# =
e 5 DR seeds 5 472000 o 0% A S we*°

0.04 7 o8 E ’ cr;

0.02 8 .

- 976000 R /
0.00 3 0 20 40 60 8 100 120
0 20 40 60 80 100 120 #DRCs
#DRCs
w K6 H »

AMS. CAMS Theme: “Parallel Problem Solving from Nature

Leam-to-Optimize, Adaptive Leaming, Multi-fidelity BO,
l”;?“‘j Kahng ECE 260C SP25 Evolutionary Optimization, Reinforcement Learning, ... (+ metaheuristics) 55


https://vlsicad.ucsd.edu/Publications/Journals/j15.pdf
https://vlsicad.ucsd.edu/Publications/Journals/j30.pdf

ML Target #5: “The Analog Hole”

(2.5D) Extraction Model Creation Golden Reference Tool to Build Models

* Determine the characteristics of the process from the foundry
technology information (e.g. itf or ict file)
* Layer specs, wire shape, dielectrics stack, WEE tables, Thickness
tables, Rho tables, ...

*® Create a large number of patterns of interconnect and
transistor-level test structures
* Interconnect-level test structures differ from transistor-level
structures

Test
Patterns
(physical)

&.9. Rapheal,

Pracess
Tech
File

Quickcap,
Fast(er)cap

Model
Builder

oR

e.g. StarRe,
Quantus

<
Test

Patterns

(drawn)

Extensive test pattern coverage helps

* Run each pattern through a golden reference extractor
determine which effects are significant

* Field solver requires proper shape, enlargements, thickness and
dielectrics

* Based on golden reference results, build extraction models
* Verify model results versus test results and design layouts

The model builder decides which
effects need to be modeled in the
extractor

Note: OpenRCX does NOT include explicit Metal Fill in the modeling patterns

2 Kahng ECE 260C P25 Thanks: Dimitris Fotakds and David Overhauser . @ Kahng ECE 260C 5P25 Thanks: Dimitris Fotakis and David Overhauser »
-

® Field solvers, golden tools, patterns, ... Can we skip this?
® Idea: build OpenRCX table from massive post-P&R def, spef

Theme: “It’s Just Physics” could mean “No More Secrets” !!!

Comment 1: There is massive data in standard tool reports, outputs
Comment 2: ML can help “bypass” PDK data for material, device, BEOL ...

= Kahng ECE 260C SP25 18
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Al, ML (+ OpenROAD): Some Takeaways

* What's Different (and Difficult)

* Layers of hierarchy, abstractions and boundaries in any given instance of “design problem”

* “Construct by correction” in chained chaotic, discrete (+ high-stakes) optimization (row to use predictions?)
* Extreme multiscale in space, time

* Infinite variety of possible layouts, shapes, constraints, designs

* Data is unavailable - proxies needed (+privacy-preservation, obfuscation, trust/verification etc.)

* Many Opportunities
* Full-stack proxy data generation will unblock many next steps ! (47 with a bullet’)
» “Stubs and supports” for physical modeling and design of digital twins, 3D heterogeneous integration
* Fast and accurate optimization of multiphysics behavior without detailed PDE simulations
* Leverage datasets, insights, models developed for other engineering and design domains?
* Pathfinding (from materials to systems) into the “beyond-everything” future
* [Opportunities in RTL-to-GDSII: see Lecture Slides, Example ML Targets, and Themes!]

* Trajectories of Connecting Silos
* Materials + Mechanical sciences + EE/CS + Optimization + Al
* Electrical-Thermal = Mechanical = Aging/Reliability/Noise - ...
* Digital (HW + SW) - Analog > Mechanical - (hydraulic, thermal, magnetic, fluidic) - ...

= Kahng ECE 260C SP25 a9
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