
1

ECE 260C, Spring 2025

Routing

Andrew B. Kahng

Thanks to: Bangqi Xu, Matt Liberty, Cho Moon, Eder Monteiro, Zhiang Wang, …

Kahng ECE 260C SP25

2

Physical Design Flow Pictures (old ECE 260B slide)

• Floorplanning • Powerplanning

• Placement • Routing

Kahng ECE 260C SP25

3

Final (Detailed) Routing

Kahng ECE 260C SP25

4

Background

• Routing challenges
• Complex design rules
• Enormous solution space
• Physical and circuit considerations

• Generic “area routing” flow
• Global routing

• Produces 3D “route guides”

• Detailed routing
• Input: route guides = union of gcells
• Output: physical nets
• Subject to: honoring route guides,

honoring design rules http://www.ispd.cc/contests/18/index.htm

gcell

Blockage-aware

GCell = global routing grid;
Global router will only generate gcell-to-gcell connections

[ICCAD18]

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

5

• Must be able to clean up DRC (design rule check)
violations !
• Without a DRC engine  can’t tell that violations exist !
• Without violation filtering have no clue what to ripup

• Major source of violations: naive pin access
• On-track access assumption
• No inter-cell pin access compatibility check
• No accurate modeling of design rules

• DRC engine and robust pin access are “scuba tanks”
• SCUBA: Self-Contained, Underwater, Breathing Apparatus

Critical Elements

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

6

• Best academic detailed router for contest benchmarks
• Only academic detailed router capable of delivering

DRC-clean solution for commercial foundry nodes

TritonRoute (2018-2022) – Overall Structure

TritonRoute

Database

Routing Engine DRC EnginePin Access

IO

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

7

Geometry-Based Design Rule
Checking for Detailed Routing

Kahng ECE 260C SP25

8

• Design rule checking is critical for EDA enablement
• New technology has increasingly complex design rules
• Mandatory physical verification for signoff

• No end-to-end framework for design rule checking in
the open literature

 Missing key enablement for DRC convergence

Motivation

Work at UCSD:
(i) Optimized data structures for design rule check for detailed

routing
(ii) Industry-format (LEF) based design rule check methodology
(iii) Differentiation between fixable and non-fixable design rule

violations for detailed routing
(iv) Foundry nodes: confirmed “clean” by commercial DRC tools

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

9

• Basic geometry objects in a DRC checking database
• Polygon edge

= Edge of a polygon
• Max rectangle

= Maximum rectangle inside a polygon
• Polygon set

= Union of disjoint polygons

Preliminaries: Basic Geometry Objects

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

10

• Typical design rule can have three components
• Spacing value
• Intrinsic property condition (optional trigger)
• Extrinsic property condition (optional trigger)

• Example

Preliminaries: Design Rule Syntax

Spacing value Intrinsic property Extrinsic property

EOL = END-OF-LINE
Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

11

• A design rule violation marker consists of
• Bounding box
• Layer
• Violation net(s)
• Design rule

• Usage: Give hints to DR where / what to ripup
• Example

• Rule: SPACING 0.06
 Object needs to be 0.06 unit away from each other

Preliminaries: Design Rule Violation Marker

Marker
• Bbox: (0.30, 0.05) – (0.35, 0.11)
• Layer: M2
• Violation nets: net0 & net1
• Design rule: SPACING

where

what

why

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

12

• Knowing locations of DRCs is not enough
• DRC could happen inside standard cell itself
• DRC could happen between PG stripes
 DR cannot help resolve such non-fixable DRCs

• Need to filter DRCs before give them to DR
• I.e., only provide DR with fixable DRCs

• Example

Preliminaries: Fixable and Non-Fixable DRC

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

13

• Goal: Given layout objects, find fixable design rule
violations (if any)

• Inputs
• Design layout database
• Design rules

• Constraints
• Design rule checking bounding box
• Layer range (e.g., M2-M5)

• Output
• Fixable design rule violation markers

Problem Statement

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

14

Database Objects

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

15

• Object (fixed) & object (routing)
 Key for fixable / non-fixable differentiation

• Polygon set (fixed)
• Union of fixed obj. shapes

• Polygon set (routing)
• Union of routing obj. shapes

Data Structure

DRC checking database

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

16

• RTree as underlying container

• Two RTrees for each layer
• MaxRect RTree
• Edge Rtree

• Each maxRect / Edge has property indicating
whether it is fixed or routing

Region Query

Layout RTree Representation

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

17

High-Level Flow for DRC Check (Single Obj.)

MaxRect / Edge

Return clean

Design Rule

Meet intrinsic
property?

Meet extrinsic
Property?

Return DRC marker

Region query using
spacing value

No

Yes

Yes

< spacing?

No
Fixed?

No

Yes
Yes

No

Triggering condition check

Spacing condition check

Fixable violation differentiation

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

18

• Design rules are divided into two categories
 Metal layer and Cut layer

• Metal layer rules
• Metal short
• Non-sufficient-metal-overlap
• Parallel run length (PRL) spacing
• Minimum width
• Minimum step
• End-of-line (EOL) spacing

• Cut layer rules
• Cut short
• Cut spacing

Design Rules Types

Metal Spacing Rule

Metal Shape Rule

Many more design rule types in
advanced technologies! See the
“LEF5.8” standard, e.g., here.

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

19

Metal Spacing Checking

https://www.ispd.cc/contests/19/Introduction_of_ISPD19_Contest_Problem.pdf

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

20

Short Checking

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

21

NS-Metal Checking

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

22

PRL Spacing Checking

Kahng ECE 260C SP25

23

Min Width Checking

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

24

Min Step Checking

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

25

EOL Spacing Checking

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

26

Cut Spacing Checking

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

27

Dynamic Programming-Based Multi-
Level Pin Access Analysis

Kahng ECE 260C SP25

28

• Pin access = wire / via connection to access a pin

• Critical to decrease DRCs in detailed routing
 Failure results in repeating violation patterns

• Need robust & scalable pin access analysis (!)

Motivation

Wire access Via access

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

29

• Existing work [Han15] assumes on-track access
• Usually assume alignment between routing track

and placement site
 Not always true (ISPD18/19 contests)

• LUT-based abutting cell pair analysis [Xu16]
 Not scalable (> 10M combinations)

Previous Works / Our Work

Our work:
(i) Robust pin access point enumeration
(ii) Boundary conflict-aware access pattern enumeration
(iii) Dynamic programming-based access pattern selection for

standard cell instance cluster

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

30

• Testcase: ISPD18_test10
• 290K standard cell instances
• 992K nets

• DRC clean pin access pattern selection in 241s

What Does Pin Access Analysis Do?

Whole design layout

Zoomed-in region
(red dots are via access locations)

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

31

• Multi-level hierarchical pin access
analysis

• Unique instance pin level
• Unique instance level
• Instance cluster level

• Scalable memory usage
• On-demand design-based analysis

• Scalable runtime
• DRC check on the fly
 More than 2M DRC engine calls in
8min with single thread

How to Find Such Access Points?

Cluster-based
access pattern

selection

Unique instance-
based access

pattern generation

Pin-based access
point generation

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

32

• To address track-placement site misalignment
• Defined by a signature consisting of

• Cell master (e.g., BUFFX4)
• Orientation
• Offsets to all track patterns

• Two cell instances point to the same unique
instance if they share the same signature

Unique Instance

Two different unique instances due to M1 track offset
Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

33

• Access point (for a pin)
• A location (x, y, layer) that detailed router (DR) can make

route to

• Valid access point
• An access point that allows DRC-clean routing

• Valid access pattern: combination of mutually
DRC-clean access points (one access point per pin)

Definitions

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

34

• Goal: an evaluation system compatible with a broad
range of technology nodes

• Four coordinate types

• Quality of an access point = sum of coordinate type
costs for both x and y coordinates

Access Point Quality Assessment

CostType

1On-track

2Half-track

3Shape-center

4Enclosure boundary

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

35

1. On-track: On preferred and non-preferred routing track of
upper layer

2. Half-track: At midpoint between two neighboring routing
tracks

3. Shape-center: At midpoint between left and right (or top
and bottom) coordinates of a rectangular pin shape

4. Enclosure boundary: Via enclosure aligns with pin shape
boundary

Coordinate Types

Illustration of y-coordinate types
Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

36

Pin-Based Access Point Generation

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

37

• Input
• Valid access points of pins

in a unique instance

• Output
• Valid access patterns

Unique Instance-Based Access Pattern Generation

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

38

• Sort pins according to their average x coordinate of
valid access points

• Idea: neighbors in sorted pin list are more likely to
have conflicts due to DRC

• I.e., pin A and pin B are more likely to have conflict
compared to pin A and pin C

Pin Ordering

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

39

• Vertex = access point
• Marked with pin index and access point index

• E.g., 23 means the third access point of the second pin

• s and t are virtual start and end points

• Pin correspond to a “group” of vertices in graph
• Edge exists between pair of access points from neighboring

groups, weighted by physical distance
• Access pattern = path from s to t

Graph Construction

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

40

Dynamic Programming-Based Pattern Generation

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

41

• Inter-cell pattern conflicts between cell-boundary pins
 Need to encourage to choose different boundary

pin access point

• Solution: add penalty cost to boundary pin access
points if they have been selected in existing pattern

Iterative Edge Penalty Method

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

42

• Use DRC check engine to validate access pattern
i. Violation can occur between non-neighboring pins
ii. Some design rules check multiple objects (access points)

• Only DRC-clean patterns will be seen in next stage

Pattern Legality Check

(i) (ii)

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

43

• Inputs
• Instances in a cluster (of the same row)
• Access patterns of each unique instance
• Map from instance to corresponding unique instance

• Output
• Access pattern for each

instance in the cluster with
minimized overall cost

Cluster-Based Access Pattern Selection

Access Pattern Sel.

Inst Ordering

Graph Construction

DP-Based Pattern Sel.

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

44

• Instance ordering
• Sort instances in the cluster according to x coordinate of the

lower-left corner

• Graph construction
• Vertex = access pattern
• Shortest path from s to t is the best pattern combination

• DP formulation
• Similar as previous formulation
• No iteration

Cluster-Based Access Pattern Selection

Kahng ECE 260C SP25 Thanks: Dr. Bangqi Xu

45

CTS

Kahng ECE 260C SP25

46

CTS Main Steps

• Sink clustering
• Sequential elements are grouped

into a fixed number of clusters based
on their locations

• Tree construction and balancing
• Buffers are inserted based on some

structure, e.g., hierarchical H-Tree

• Tree lengths are balanced such that
clock skews are minimized

• LDRC (electrical rules) repair
• LDRC violations are repaired during

or after CTS

• Max transition, max capacitance, max
wire length, etc.

Kahng ECE 260C SP25 Thanks: Dr. Cho Moon, Precision Innovations

47

Sink Clustering

• Group sequential elements
based on their locations to
produce the best results (e.g.,
minimum wire length)
• These parameters can be

specified manually or determined
automatically
• Cluster size
• Cluster diameter

• All elements in the cluster will
be driven by the same buffer

Kahng ECE 260C SP25 Thanks: Dr. Cho Moon, Precision Innovations

https://vlsicad.ucsd.edu/Publications/Conferences/32/c32.pdf

Early “TritonCTS” versions
used spacefilling curves to
perform sink clustering !

48

Clock buffers should not be placed on top of macros,
placement blockages or another clock buffers

• Detailed placement may displace “illegal” buffers and cause timing to
change after CTS

• New “legal” buffer locations need to preserve balanced clock tree

• Obstruction-aware CTS can reduce legalizer displacement by up to 4X

Obstruction-Aware CTS

sky130hd/microwatt without
obstruction-aware CTS

sky130hd/microwatt with
obstruction-aware CTS

Kahng ECE 260C SP25 Thanks: Dr. Cho Moon, Precision Innovations

49

OpenROAD CTS Commands
Example OutputDescriptionCommand

[INFO CTS-0050] Root buffer is BUF_X4.
[INFO CTS-0051] Sink buffer is BUF_X4.
[INFO CTS-0052] The following clock buffers will be used for CTS:

BUF_X4
. . .
[INFO CTS-0017] Max level of the clock tree: 5.
[INFO CTS-0098] Clock net "clk"
[INFO CTS-0099] Sinks 2537
[INFO CTS-0100] Leaf buffers 96
[INFO CTS-0101] Average sink wire length 9247.25 um
[INFO CTS-0102] Path depth 18 - 19
[INFO CTS-0207] Leaf load cells 62
[INFO RSZ-0058] Using max wire length 693um.
[INFO RSZ-0047] Found 33 long wires.
[INFO RSZ-0048] Inserted 94 buffers in 33 nets.

Build a balanced Htree by
choosing appropriate clock
buffers

clock_tree_synthesis

[INFO RSZ-0058] Using max wire length 2154um.

Fixes LDRC violations
including max wire length

repair_clock_nets

Clock clk
1.26 source latency inst_7_12/clk ^

-1.13 target latency inst_8_12/clk ^
0.00 CRPR

0.13 setup skew

Report worst clock skew for
each clock signal in the
design

report_clock_skew

Startpoint: dp.rf.rf[31][3]$_DFFE_PP_
(rising edge-triggered flip-flop clocked by clk)

Endpoint: aluout[0] (output port clocked by clk)
Path Group: clk
Path Type: max

Fanout Cap Slew Delay Time Description

0.00 0.00 clock clk (rise edge)
0.00 0.00 clock source latency

1 0.09 0.00 0.00 0.00 ^ clk (in)
clk (net)

0.00 0.00 0.00 ^ clkbuf_0_clk/A (sky130_fd_sc_hd__clkbuf_16)
8 0.21 0.22 0.25 0.25 ^ clkbuf_0_clk/X (sky130_fd_sc_hd__clkbuf_16)

clknet_0_clk (net)
0.22 0.00 0.25 ^ clkbuf_3_3__f_clk/A (sky130_fd_sc_hd__clkbuf_16)

17 0.23 0.24 0.34 0.59 ^ clkbuf_3_3__f_clk/X (sky130_fd_sc_hd__clkbuf_16)
clknet_3_3__leaf_clk (net)

0.24 0.00 0.59 ^ clkbuf_leaf_47_clk/A (sky130_fd_sc_hd__clkbuf_16)
11 0.04 0.06 0.20 0.79 ^ clkbuf_leaf_47_clk/X (sky130_fd_sc_hd__clkbuf_16)

clknet_leaf_47_clk (net)
0.06 0.00 0.79 ^ dp.rf.rf[31][3]$_DFFE_PP_/CLK

(sky130_fd_sc_hd__dfxtp_2)
3 0.01 0.03 0.32 1.11 v dp.rf.rf[31][3]$_DFFE_PP_/Q

(sky130_fd_sc_hd__dfxtp_2)
dp.rf.rf[31][3] (net)

Report timing violations
including clock paths

report_checks -format
full_clock_expanded

Kahng ECE 260C SP25 Thanks: Dr. Cho Moon, Precision Innovations

50

Clock Tree Viewer

Open GUI
• gui::show

Enable “Clock Tree
Viewer” if not enabled

Clock tree viewer shows
latencies at all sinks

• Red sinks = FF/latches
• Green sinks = macros

• Insertion delays are added
to macro sinks

Kahng ECE 260C SP25 Thanks: Dr. Cho Moon, Precision Innovations

51

Generalized H-Tree Concept

• Structured clock trees
K. Han, A. B. Kahng and J. Li, "Optimal Generalized H-Tree Topology and Buffering for High-Performance and Low-Power Clock Distribution", IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems https://vlsicad.ucsd.edu/Publications/Journals/j128.pdf.

FishboneH-tree

<Skew

>Wirelength

>Latency

>Power
H-tree “Fishbone”

Generalized H-tree (GH-tree)

Can we mix two clock structures to have better
tradeoff between clock power vs. skew or latency?

• History: (1) Bakoglu’s 1988 book made H-tree approach well-known. Cadence CTGen
(Dr. Lars Hagen), mid-1990s, started trend toward “fishbone” style – save capacitance!

• These days: on-chip variation (OCV) derates are costly, so goal is to reduce insertion
delay (== “latency”).

Kahng ECE 260C SP25

52

a balanced tree topology
with arbitrary branching
factor at each level

Generalized H-tree (GH-tree)

GH-tree with depth P = 8 and branching factors (4, 2, 2, 2, 4, 2, 2, 2)

• Structured clock trees
K. Han, A. B. Kahng and J. Li, "Optimal Generalized H-Tree Topology and Buffering for High-Performance and Low-Power Clock Distribution", IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems https://vlsicad.ucsd.edu/Publications/Journals/j128.pdf.

FishboneH-tree

<Skew

>Wirelength

>Latency

>Power
H-tree “Fishbone”

Generalized H-Tree Concept

Kahng ECE 260C SP25

53

Idea: Capture/Explore Tradeoff (“Pareto” Frontier)

• (Recall: floorplan shape functions ?)

Kahng ECE 260C SP25

54

Also: Routing to IOs: pad (ICeWall)

Kahng ECE 260C SP25

55

SOC Integration and Planning: ICeWall Padring Gen

• Starts with:
• Verilog netlist with signal IO pads for

simulation and STA
• Power/ground IO cells may be present
• IO cell data (signal, P/G, fillers, …)

from library documentation

• Footprint file defines where each
padcell is to be placed in the padring –
supports reuse of pre-existing padframes

• Signal mapping file defines which signal
in the Verilog is to be associated with
which padcell in the padring
• + Auto-assignment capability in ICeWall

• Decouples footprint and signal
mapping for padframe reuse

OpenROAD

Verilog

Synthesis

ICeWall: Extract
Footprint

DEF

ICeWall: Init
Floorplan

IO Library
Documentation

IO Library
Data

Footprint
Definition

Signal
Mapping

Kahng ECE 260C SP25 Thanks: Colin Holehouse, Arm

56

ICeWall Padring Examples

What designers ask for …

• Determining the number of required
P/G pads to be provided as callback
functions to allow to encapsulate
specs from library documentation

• Definition of padring segments for
analog signals, PHYs, different IO
voltages, etc.

• Definition of control cells that are
required on a per-IO cell basis

GF12LP BP-1,
staggered pads

GF12LP BP-1,
as a flipchip

SKY130
coyote, + pads

Kahng ECE 260C SP25 Thanks: Colin Holehouse, Arm

57

Also: GPU-Accelerated GRT

Kahng ECE 260C SP25

58

• 2D-GPU-accelerated GRs are based on FastRoute4.1
• SPRoute and SPRoute2.0: implement parallel maze routing

Summary of Previous Methods

2D GR Flow 3D GR Flow

FastGR / GGR

GAMER / GGR

Route a batch of non-overlapping nets concurrently !

Runtime Bottleneck

• 3D-GPU-accelerated GRs are based on CUGR
• FastGR and GGR: implement parallel L/Z-shape pattern routing
• GAMER and GGR: implement parallel maze routing

• Replace the A* search algorithm with the parallel n-bend pattern routing algorithm

Kahng ECE 260C SP25 Thanks: Dr. Zhiang Wang

59

Proposed GPU-Accelerated TritonRoute-GR

• Our GPU-GR is based on TritonRoute-GR
• TritonRoute-GR adopts a two-step approach (2D + 3D GR)

• 2D global routing can effectively reduce the solution space
• 3D global routing can further optimize the solution locally

• Replace the original 2D-RRR and 3D-RRR with corresponding GPU-
accelerated GPU-RRR

Clip-based
2D GPU-RRR

Clip-based
3D GPU-RRR

Kahng ECE 260C SP25 Thanks: Dr. Zhiang Wang

60

Current Approach

Unified Resource Model
• Routing tracks
• Design rules
• Pin accesses

Parallel pattern
routing proposed by FastGR

Three-level parallel maze
routing using parallel

bidirectional A* search

Kahng ECE 260C SP25 Thanks: Dr. Zhiang Wang

61

Three-Level Parallel Maze Routing

Single GPU

Single priority queue

Maze routing
for a single net

Maze routing for all
the nets in a single clip

Parallel bidirectional A* search

Nonoverlapping nets

Divide the routing region
into multiple non-overlapping
Clips (200 x 200 gcells)

Design Maze Routing CUDA Programming Model

Level 1

Level 2

Level 3

• We adopt three-level parallel maze routing
• Level 1: maze routing for all the nets in a single clip Grid on GPU
• Level 2: maze routing for a single net Block on GPU

• Parallel A* search based on multiple priority queues [ZhouZ'15AAAI]

• Level 3: expansion for a single priority queue Thread on GPU

Kahng ECE 260C SP25 Thanks: Dr. Zhiang Wang

62

• “machine learning alongside optimization
algorithms”

• Combine the detailed-routability-driven GR with the ML-
based DRV prediction models

• Improve accuracy and robustness compared to “end to end
learning”

Future Work

Kahng ECE 260C SP25 Thanks: Dr. Zhiang Wang

63

BACKUP

Kahng ECE 260C SP25

