
1

ECE 260C

Logic Synthesis

Cho Moon

ECE 260C

2

• Cho Moon has over 25 years of experience in
EDA. He is currently a distinguished engineer
at Precision Innovations. He has led
advanced node development for tools like
PrimeTime, Fusion Compiler and First
Encounter at Synopsys, Blaze DFM, Cadence
and other EDA and semiconductor
companies.

• He has expertise in static timing analysis, pre-
route and post-route optimization, Engineering
Change Order (ECO) optimization, logic
synthesis and formal verification.

• He holds a PhD from UC Berkeley. Bob
Brayton was his advisor.

Bio

Kahng ECE 260C SP25

3

• Your manuscript is both
good and original.
Unfortunately, the part that
is good is not original, and
the part that is original is
not good.

• Samuel Johnson

Bob Brayton’s Favorite Quote

Kahng ECE 260C SP25

Prof. Bob Brayton

4

• Introduction

• Two-level Logic Synthesis

• Multi-level Logic Synthesis
• Classical

• Contemporary

• Technology Mapping

• Classical

• Contemporary

Outline

Kahng ECE 260C SP25

5

• Indispensable

• Problem is too hard without it

• Similar to C++/C compilers

• Big impact on final PPA (performance, power and area)

• Foundation for many applications like
• Verification

• Timing analysis

• Testing

• Sequential optimization

Why Logic Synthesis?

Kahng ECE 260C SP25

6

Design Flow

System Specification

RTL

Logic synthesis

Technology mapping

Physical synthesis

Manufacturing

ABC

V
e
rific

a
tio

n

• Where does logic synthesis fit in?

Yosys

ABC

OpenROAD

Kahng ECE 260C SP25

7

module adder1 (

input clk,
input a,

input b,

input cin,
output reg sum,
output reg cout

);

reg [1:0] result;
always @(posedge clk) begin

result <= a + b + cin;

sum <= result[0];
cout <= result[1];

end
endmodule

Synthesis Example (Yosys + ABC)

module adder1(clk, a, b, cin, sum, cout);

wire _0_;

wire _1_;

input a;

wire a;

input b;

wire b;

input cin;

wire cin;

input clk;

wire clk;

output cout;

wire cout;

wire \result[0] ;

wire \result[1] ;

output sum;

wire sum;

sky130_fd_sc_hd__xor3_1 _2_ (.A(cin), .B(a), .C(b), .X(_1_));

sky130_fd_sc_hd__maj3_1 _3_ (.A(cin), .B(a), .C(b), .X(_0_));

sky130_fd_sc_hd__dfxtp_1 \cout$_DFF_P_ (.CLK(clk), .D(\result[1]),.Q(cout));

sky130_fd_sc_hd__dfxtp_1 \result[0]$_DFF_P_ (.CLK(clk), .D(_1_),.Q(\result[0]));

sky130_fd_sc_hd__dfxtp_1 \result[1]$_DFF_P_ (.CLK(clk), .D(_0_), .Q(\result[1]));

sky130_fd_sc_hd__dfxtp_1 \sum$_DFF_P_ (.CLK(clk), .D(\result[0]), .Q(sum));

endmodule

RTL (Register Transfer Level) Specification

= “Behavioral” Verilog

Gate-level Netlist Implementation

= “Structural” Verilog

Kahng ECE 260C SP25

8

• Given

• Initial design

• Design constraints

• Timing

• Power

• Area

• Target technology libraries

• Produce

• Optimal gate-level netlist that meets design constraints

Problem

Very hard optimization problem!

Kahng ECE 260C SP25

9

Slide Courtesy of Martin Poviser and Emil Tywoniak at YosysHQ

Area vs. delay tradeoff for different adders with varying bit widths

Kahng ECE 260C SP25

Adder Choices

10

Combinational Logic Synthesis

Slide courtesy of Devadas, et. al

Logic
Synthesis

netlist

netlist

Library

tech
independent

tech
dependent

2-level
Logic opt

multilevel
Logic opt

Library

Kahng ECE 260C SP25

11

f(x) : B
n

B

B = {0, 1}, x = (x1, x2, …, xn)

• x1, x2, … are variables

• x1, x1, x2, x2, … are literals

• each vertex of B
n

is mapped to 0 or 1

• the onset of f is a set of input values for which f(x) = 1

• the offset of f is a set of input values for which f(x) = 0

Boolean Functions

Kahng ECE 260C SP25

12

Logic Formulas

Slide courtesy of Devadas, et. alKahng ECE 260C SP25

13

• Binary decision diagram (BDD)

• Logic Network (LN)

• And-inverter Graph (AIG)

Logic Representation

F 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1

ab

cd

00

00

00

01

00

10

00

11

01

00

01

01

01

10

01

11

10

00

10

01

10

10

10

11

11

00

11

01

11

10

11

11

• Sum of products (SOP): F= ab + cd

• Product of sums (POS): F = (a+c)(a+d)(b+c)(b+d)

• Truth Table (TT)

Kahng ECE 260C SP25

• Slide Courtesy of Alan Mischenko

14

Which Representation and Which Optimization?

Design

Size

Inputs

Representation Optimization Tools

Small <= 16 Truth Table (TT)

Sum of Products (SOP) Minimize number of products or literals
• ab is better than abc

• ab is better than abc + abc’

Espresso

Medium 16-100 Binary Decision Diagrams (BDD)

Logic Network (LG)
And-inverter Graph (AIG)

Minimize number of nodes or widths

Minimize “area” or levels
Minimize number of nodes or levels

SIS

VIS, MVSIS
ABC

Large > 100 And-inverter Graph (AIG) Minimize number of nodes or levels ABC

Kahng ECE 260C SP25

• Slide Courtesy of Alan Mischenko

15

Historical Perspective

• Slide Courtesy of Alan Mischenko

Kahng ECE 260C SP25

16

• Introduction

• Two-level Logic Synthesis

• Multi-level Logic Synthesis
• Classical

• Contemporary

• Technology Mapping

• Classical

• Contemporary

Outline

Kahng ECE 260C SP25

17

• Given an arbitrary logic function in two-level form, produce a
smaller representation.

• For sum-of-products (SOP) implementation on PLAs
(programmable logic arrays), fewer product terms and fewer
inputs to each product term mean smaller area.

Two-level Logic Synthesis Problem

O1 = I1 I2 + I1’ I2’

O2 = I1’ I2’

I1

I2

O1

O2

Kahng ECE 260C SP25

18

• A function can be represented by a sum of cubes (products):

• f = ab + ac + bc

• Since each cube is a product of literals, this is a “sum of
products” representation

• A SOP can be thought of as a set of cubes F

• F = {ab, ac, bc} = C

• A set of cubes that represents f is called a cover of f.
• F={ab, ac, bc} is a cover of f = ab + ac + bc.

Sum-of-products (SOP)

Kahng ECE 260C SP25

19

• A cube is prime if there is no other cube that contains it

• (for example, b c is not a prime but b is)

• A cover is prime iff all of its cubes are prime

Prime Cover

c

b

Kahng ECE 260C SP25

a

20

• A cube c of a cover C is irredundant if C fails to be a cover if c
is dropped from C

• A cover is irredundant iff all its cubes are irredundant (for
example, F = a b + a c + b c)

Irredundant Cube

c

b Not covered

Kahng ECE 260C SP25

a

21

• We want to find a minimum prime and irredundant cover for a
given function.
• Prime cover leads to min number of inputs to each product term.

• Min irredundant cover leads to min number of product terms.

• Quine-McCluskey (QM) method (1960’s) finds a minimum
prime and irredundant cover.
• Step 1: List all minterms of on-set: O(2^n) n = #inputs

• Step 2: Find all primes: O(3^n) n = #inputs

• Step 3: Construct minterms vs primes table

• Step 4: Find a min set of primes that covers all the minterms: O(2^m) m =
#primes

Quine-McCluskey Method

Kahng ECE 260C SP25

22

• F = a’ b’ c’ + a b’ c’ + a b’ c + a b c + a’ b c

• Find a minimum set of primes that covers all the minterms

“Minimum column covering problem”

QM Example

b’ c’ a b’ a c b c

a’ b’ c’ X

a b’ c’ X X

a b’ c X X

a b c X X

a’ b c X

Essential primes

Kahng ECE 260C SP25

23

• Quine-McCluskey gives a minimum solution but is only good
for functions with small number of inputs (< 10)

• ESPRESSO is a heuristic two-level minimizer that finds a
“minimal” solution

ESPRESSO(F) {

do {

reduce(F);

expand(F);

irredundant(F);

} while (fewer terms in F);

verfiy(F);

}

ESPRESSO – Heuristic Minimizer

Kahng ECE 260C SP25

24

ESPRESSO ILLUSTRATED

Reduce

Irredundant

E
x
p

a
n

d

Kahng ECE 260C SP25

25

• Introduction

• Two-level Logic Synthesis

• Multi-level Logic Synthesis
• Classical

• Contemporary

• Technology Mapping

• Classical

• Contemporary

Outline

Kahng ECE 260C SP25

26

• Two-level logic synthesis is effective and mature

• Two-level logic synthesis is directly applicable to PLAs and
PLDs

But…

• There are many functions that are too expensive to implement
in two-level forms (too many product terms!)

• Two-level implementation constrains layout (AND-plane, OR-
plane)

• Rule of thumb:

• Two-level logic is good for control logic

• Multi-level logic is good for datapath or random logic

Multi-level Logic Synthesis

Kahng ECE 260C SP25

27

• Given

• Initial logic network

• Design constraints

• Arrival times, required times, power consumption, noise immunity, etc…

• Target technology libraries

• Produce

• a minimum “cost” netlist consisting of the gates from the target libraries
such that design constraints are satisfied

Multi-level Logic Synthesis Problem

Kahng ECE 260C SP25

28

• Divide logic optimization into two subproblems:

• Technology-independent optimization
• determine overall logic structure

• estimate costs (mostly) independent of technology

• simplified cost modeling

• Technology-dependent optimization (technology mapping)
• binding onto the gates in the library

• detailed technology-specific cost model

• Orchestration of various optimization/transformation techniques for each
subproblem

Modern Approach to Logic Optimization

Slide courtesy of KeutzerKahng ECE 260C SP25

29

• Logic Network:

Network Representation

Kahng ECE 260C SP25

30

• Example:

abc’+a’bd+b’d’+b’e’f (sum of cubes)

• Advantages:

• easy to manipulate and minimize

• many algorithms available (e.g. AND, OR, TAUTOLOGY)

• two-level theory applies

• Disadvantages:

• Not representative of logic complexity. For example,

• f=ad+ae+bd+be+cd+ce

• f’=a’b’c’+d’e’

• These differ in their implementation by an inverter.

• hence not easy to estimate logic; difficult to estimate progress during logic
manipulation

Node Representation: Sum of Products (SOP)

Kahng ECE 260C SP25

31

• Technology-independent optimization is a bag of tricks:

• Two-level minimization (also called simplify)

• Constant propagation (also called sweep)

f = a b + c; b = 1 => f = a + c

• Decomposition (single function)

f = abc+abd+a’c’d’+b’c’d’ => f = xy + x’y’; x = ab ; y = c+d

• Extraction (multiple functions)

f = (az+bz’)cd+e g = (az+bz’)e’ h = cde



f = xy+e g = xe’ h = ye x = az+bz’ y = cd

Technology-Independent Optimization

Kahng ECE 260C SP25

32

• More technology-independent optimization tricks:

• Substitution

g = a+b f = a+bc



f = g(a+c)

• Collapsing (also called elimination)

f = ga+g’b g = c+d



f = ac+ad+bc’d’ g = c+d

• Factoring (series-parallel decomposition)

f = ac+ad+bc+bd+e => f = (a+b)(c+d)+e

More Technology-Independent Optimization

Kahng ECE 260C SP25

33

• Introduction

• Two-level Logic Synthesis

• Multi-level Logic Synthesis
• Classical

• Contemporary

• Technology Mapping

• Classical

• Contemporary

Outline

Kahng ECE 260C SP25

34

• Classical combinational tech-independent synthesis

• suboptimal

• complicated

• hard to implement

• slow

• What if we replace it with something that is

• suboptimal, but

• simple

• easy to implement

• fast

Motivation for Contemporary Synthesis

Slide Courtesy of Alan Mischenko & Bob Brayton

Kahng ECE 260C SP25

35

• Every node is two-input AND

• Dotted line denotes inversion

• Primary inputs and register
outputs at bottom

• Primary outputs and register
inputs at top

• Can represent any set of logic
functions

And-Inverter Graph (AIG)

Slide Courtesy of Alan Mischenko & Bob Brayton

Kahng ECE 260C SP25

36

Logic Network vs. AIG

Kahng ECE 260C SP25

Equivalent AIG in ABC

a b c d

f

e

x
y

z

Logic network in SIS

a b c d

e

x y

f

z

ze

xd yd xy+ +

ab cd cd+

AIG is a logic network of 2-input AND nodes and

inverters (dotted lines)

Slide Courtesy of Alan Mischenko & Bob Brayton

37

One AIG Node – Many Cuts

Kahng ECE 260C SP25

Combinational AIG

a b c d

f

e

AIG can be used to compute many cuts
for each node

 Each cut in AIG represents a different SIS node

 No a priori fixed boundaries

 Implies that AIG manipulation with cuts is equivalent to
working on many logic networks at the same time

Different cuts for the same node

Slide Courtesy of Alan Mischenko & Bob Brayton

38

• Definition. A set of nodes C is a k-feasible cut for a node n if

(1) all the paths from the primary inputs (PIs) to node n pass through at least one
node in C,

(2) the number of nodes in C does not exceed k

k-Feasible Cuts

k Average number of cuts
per node

4 6

5 20

6 80

7 150

▪ 3-feasible cuts of n:

C1 = { p, k }

C2 = { a, b, s }

▪ Not 3-feasible cuts of n:

C3 = { p, b, c }

C4 = { a, b, s, c }

n

p k

a b

s

c

PIs: a, b, c

Slide Courtesy of Alan Mischenko & Bob Brayton
Kahng ECE 260C SP25

39

• Leads to a compact
representation

• Is applied during AIG
construction
• Propagates constants

• Makes each node structurally unique

AIG Structural Hashing

Kahng ECE 260C SP25

Slide Courtesy of Alan Mischenko & Bob Brayton

40

Resubstitution considers a node in a logic network and
expresses it using a different set of fanins

AIG Resubstitution

X X

Kahng ECE 260C SP25

41

Timing Criticality

• Critical nodes
• Used by many traditional algorithms

• Critical edges
• Used by ABC

• ABC pre-computes critical edges of
critical nodes
• Reduces computation

• An edge between critical nodes may
not be critical
• See illustration: edge 1→3

AIG “speedup”

1

2

3

44

3

2

1

Primary inputs

Primary outputs

Kahng ECE 260C SP25

42Kahng ECE 260C SP25

Delay-Oriented Restructuring

F00 F01 F10 F11

x y

x

y

F

 F



• Using traditional MUX-restructuring

– AKA generalized select transform

x and y are the critical edge inputs

43

• Pre-computing subgraphs

• Consider function f = abc

AIG Rewriting

a b a c

Subgraph 1

b c

a

Subgraph 2

a c

b

Subgraph 3

▪ Rewriting subgraphs

Rewriting node A

Rewriting node B



a b a c



a b a c

A

Subgraph 1

b c

a

A

Subgraph 2

b c

a

B

Subgraph 2
a b a c

B

Subgraph 1

In both cases 1 node is saved

Slide Courtesy of Alan Mischenko & Bob Brayton

Kahng ECE 260C SP25

44

iterate 10 times {

for each AIG node {

for each k-cut

derive node output as function of cut variables

if (smaller AIG is in the pre-computed library)

rewrite using improved AIG structure

}

}

Combinational Synthesis By AIG Rewriting

Note: each AIG node has, on average, 5 4-cuts compared

to a SIS node with only 1 cut

Rewriting at a node can be very fast – using hash-table

lookups, truth table manipulation, disjoint decomposition

Slide Courtesy of Alan Mischenko & Bob Brayton
Kahng ECE 260C SP25

45

Experimental Results (MCNC)

Logic synthesis flow Standard cells FPGAs (k=5)

used for optimization Area

retio

Delay

ratio

Area

ratio

Delay

ratio

Runtime

ratio

No optimization 1.00 1.00 1.00 1.00 0.00

ABC (AIG rewriting) 0.87 0.96 0.93 0.98 1.00

MVSIS (mvsis.rugged) 0.91 1.10 0.93 1.03 7.12

SIS (script.delay) 0.94 0.99 0.98 0.97 ~100.00

SIS (script.rugged + speed_up) 0.94 0.90 0.98 0.94 ~1000.00

Slide Courtesy of Alan Mischenko & Bob Brayton

A. Mischenko, S. Chatterjee, R. Brayton, “DAC-Aware AIG Rewriting: A Fresh Look at

Combinational Logic Synthesis”, DAC 2006

Kahng ECE 260C SP25

46

• Introduction

• Two-level Logic Synthesis

• Multi-level Logic Synthesis
• Classical

• Contemporary

• Technology Mapping

• Classical

• Contemporary

Outline

Kahng ECE 260C SP25

47

Technology-dependent optimization consists of

• Technology mapping: maps logic network to a set of gates from
technology libraries

• Local transformations

• Discrete resizing

• Cloning

• Fanout optimization (buffering)

• Logic restructuring

Technology-Dependent Optimization

Slide courtesy of Keutzer

Kahng ECE 260C SP25

48

Input

• Technology independent, optimized logic network

• Description of the gates in the library with their cost

Output

• Netlist of gates (from library) which minimizes total cost

General Approach

• Construct a subject DAG for the network

• Represent each gate in the target library by pattern DAG’s

• Find an optimal-cost covering of subject DAG using the collection of
pattern DAG’s

• Canonical form: 2-input NAND gates and inverters

DAGON: Technology Binding and Local Optimization by DAG Matching

(K. Keutzner, 1987)

Classical Technology Mapping

Kahng ECE 260C SP25

49

• DAG covering is an NP-hard problem

• Solve the sub-problem optimally

• Partition DAG into a forest of trees

• Solve each tree optimally using tree covering

• Stitch trees back together

DAG Covering

Slide courtesy of Keutzer
Kahng ECE 260C SP25

50

• Transform netlist and libraries into canonical forms

• 2-input NANDs and inverters

• Visit each node in BFS from inputs to outputs

• Find all candidate matches at each node N

• Match is found by comparing topology only (no need to compare functions)

• Find the optimal match at N by computing the new cost

• New cost = cost of match at node N + sum of costs for matches at children of N

• Store the optimal match at node N with cost

• Optimal solution is guaranteed if cost is area

• Complexity = O(n) where n is the number of nodes in netlist

Tree Covering Algorithm

Kahng ECE 260C SP25

51

Tree Covering Example

into the technology library (simple example below)

Find an ``optimal’’ (in area, delay, power) mapping of this circuit

Slide courtesy of KeutzerKahng ECE 260C SP25

52Kahng ECE 260C SP25

Library Gates

INVERTER 2

NAND2 3

NAND3 4

NAND4 5

Element/Area Cost Tree Representation (normal form)

Slide courtesy of Keutzer

53Kahng ECE 260C SP25

Trivial Covering

subject DAG

7 NAND2 (3) = 21
5 INV (2) = 10

Area cost 31

Slide courtesy of Keutzer

Can we do better with tree covering?

54Kahng ECE 260C SP25

Optimal Covering

``subject tree’’

INV 2
ND2 3
2 ND3 8
AOI21 4

Area cost 17

AOI21

ND2

INV

ND3

ND3

Slide courtesy of Keutzer

55

• DAG covering formulation

• Separated library issues from mapping algorithm (can’t do this with rule-
based systems)

• Tree covering approximation

• Very efficient (linear time)

• Applicable to wide range of libraries (std cells, gate arrays) and
technologies (FPGAs, CPLDs)

• Weaknesses
• Problems with DAG patterns (Multiplexors, full adders, …)

• Large input gates lead to many patterns

Summary of Classical Technology Mapping

Kahng ECE 260C SP25

56

• Introduction

• Two-level Logic Synthesis

• Multi-level Logic Synthesis
• Classical

• Contemporary

• Technology Mapping

• Classical

• Contemporary

Outline

Kahng ECE 260C SP25

57

AIG Technology Mapping

Input: A logic network (And-Inverter

Graph)

Output: A netlist of K-LUTs implementing AIG and

optimizing some cost function

The subject graph The mapped netlist

Technology

Mapping

a b c d

f

e
a b c d e

f

Kahng ECE 260C SP25

58

Sample ABC Scripts
Area Optimization Script

Command Function

strash transform combo logic into AIG by "structural hashing"

dch similar to &dch
decompose to AND-INV and tech map subject to timing constraints

map –B 0.9 perform std cell mapping of the current network using 2-level logic minimization approach
(Boolean matching + resynthesis)
-B 0.9 delay multiplier to bias gate selection (0.0 = area mode, 1.0 = delay mode)

topo rearrange nodes to be in topological order for STA

stime –c perform STA using liberty library

buffer –c perform buffering and sizing on mapped network

upsize –c selectively increase gate sizes on the critical path

dnsize –c selectively decrease gate sizes while maintaining delay

Delay Optimization Script

Command Repeat Function

&get –n

X1

convert current network into GIA (generalized-iterative-and)

&st perform structural tech map by considering physical layout

&dch decompose to AND-INV and tech map subject to timing constraints

&nf perform tech mapping of the network using network flow algorithm

&st

X5

perform structural tech map by considering physical layout

&syn2 perform secondary delay/area opt subject to timing constraints

&if –g –K 6 perform FPGA tech map based on priority cuts

&synch2 perform 2nd stage sequential opt including retiming and clock gating

&nf perform tech mapping of the network using network flow algorithm

&put

X1

put current network into memory buffer

buffer –c perform buffering and sizing on mapped network

topo rearrange nodes to be in topological order for STA

stime –c perform STA using liberty library

upsize –c selectively increase gate sizes on the critical path

dnsize –c selectively decrease gate sizes while maintaining delay
Kahng ECE 260C SP25

59

Comparison of Classical vs. AIG Synthesis

Slide Courtesy of Alan Mischenko & Bob Brayton

Kahng ECE 260C SP25

60

Thank You

	Slide 1: ECE 260C Logic Synthesis
	Slide 2: Bio
	Slide 3: Bob Brayton’s Favorite Quote
	Slide 4: Outline
	Slide 5: Why Logic Synthesis?
	Slide 6: Design Flow
	Slide 7: Synthesis Example (Yosys + ABC)
	Slide 8: Problem
	Slide 9: Adder Choices
	Slide 10: Combinational Logic Synthesis
	Slide 11: Boolean Functions
	Slide 12: Logic Formulas
	Slide 13: Logic Representation
	Slide 14: Which Representation and Which Optimization?
	Slide 15: Historical Perspective
	Slide 16: Outline
	Slide 17: Two-level Logic Synthesis Problem
	Slide 18: Sum-of-products (SOP)
	Slide 19: Prime Cover
	Slide 20: Irredundant Cube
	Slide 21: Quine-McCluskey Method
	Slide 22: QM Example
	Slide 23: ESPRESSO – Heuristic Minimizer
	Slide 24: ESPRESSO ILLUSTRATED
	Slide 25: Outline
	Slide 26: Multi-level Logic Synthesis
	Slide 27: Multi-level Logic Synthesis Problem
	Slide 28: Modern Approach to Logic Optimization
	Slide 29: Network Representation
	Slide 30: Node Representation: Sum of Products (SOP)
	Slide 31: Technology-Independent Optimization
	Slide 32: More Technology-Independent Optimization
	Slide 33: Outline
	Slide 34: Motivation for Contemporary Synthesis
	Slide 35: And-Inverter Graph (AIG)
	Slide 36: Logic Network vs. AIG
	Slide 37: One AIG Node – Many Cuts
	Slide 38: k-Feasible Cuts
	Slide 39: AIG Structural Hashing
	Slide 40: AIG Resubstitution
	Slide 41: AIG “speedup”
	Slide 42: Delay-Oriented Restructuring
	Slide 43: AIG Rewriting
	Slide 44: Combinational Synthesis By AIG Rewriting
	Slide 45: Experimental Results (MCNC)
	Slide 46: Outline
	Slide 47: Technology-Dependent Optimization
	Slide 48: Classical Technology Mapping
	Slide 49: DAG Covering
	Slide 50: Tree Covering Algorithm
	Slide 51: Tree Covering Example
	Slide 52: Library Gates
	Slide 53: Trivial Covering
	Slide 54: Optimal Covering
	Slide 55: Summary of Classical Technology Mapping
	Slide 56: Outline
	Slide 57: AIG Technology Mapping
	Slide 58: Sample ABC Scripts
	Slide 59: Comparison of Classical vs. AIG Synthesis
	Slide 60: Thank You

