ECE 260C

Logic Synthesis

Cho Moon

=
usp ECE 260C

Bio

* Cho Moon has over 25 years of experience in
EDA. He is currently a distinguished engineer
at Precision Innovations. He has led
advanced node development for tools like
PrimeTime, Fusion Compiler and First
Encounter at Synopsys, Blaze DFM, Cadence
and other EDA and semiconductor
companies.

* He has expertise in static timing analysis, pre-
route and post-route optimization, Engineering
Change Order (ECO) optimization, logic
synthesis and formal verification.

* He holds a PhD from UC Berkeley. Bob
Brayton was his advisor.

=
usp Kahng ECE 260C SP25

Bob Brayton’s Favorite Quote

- Your manuscript is both
good and original.
Unfortunately, the part that y
IS good is not original, and
the part that is original is
not good.

e Samuel Johnson

=
usp Kahng ECE 260C SP25

Outline

* Two-level Logic Synthesis

* Multi-level Logic Synthesis
* Classical
* Contemporary

* Technology Mapping

* Classical
e Contemporary

=
usp Kahng ECE 260C SP25

Why Logic Synthesis?

* Indispensable

* Problem is too hard without it
e Similar to C++/C compilers

* Big impact on final PPA (performance, power and area)

* Foundation for many applications like
* Verification
* Timing analysis
* Testing
* Sequential optimization

=
usp Kahng ECE 260C SP25

Design Flow

* Where does logic synthesis fit in?

—_ ———
—— L .
— ~

—

(

System Specification

Logic synthesis

I

Technology mapping

Physical vsynthesis

- —
— —
| —
—_ —
—_— _—

Manufacturing

= Kahng ECE 260C SP25

L S0

uopeayjie A

<>

T

T <—

>

Synthesis Example (Yosys + ABC)

module adderl (

input clk,
input a,
input Db,
input cin,

output reg sum,
output reg cout

reg [1:0] result;
always @ (posedge clk) begin
result <= a + b + cin;
sum <= result[0];
cout <= result[l];
end
endmodule

RTL (Register Transfer Level) Specification
= “Behavioral” Verilog

=

usp Kahng ECE 260C SP25

module adderl (clk, a, b, cin, sum, cout);

wire 0 _;
wire _1 ;
input a;
wire a;
input b;
wire b;

input cin;
wire cin;

input clk;

wire clk;
output cout;
wire cout;

wire \result[O0]
wire \result[1]
output sum;
wire sum;

;

;

skyl130_fd sc_hd_ xor3_1 2 (.A(cin), .B(a), .C(b), .X(_1));

skyl130_fd sc_hd maj3_ 1 3 (.A(cin), .B(a), .C(b), .X(0));

skyl130_fd_sc_hd__dfxtp 1 \cout$ DFF P_ (.CLK(clk), .D(\result[1l]),.Q(cout));

skyl130_fd sc_hd dfxtp 1 \result[0]$ DFF P (.CLK(clk), .D(_1),.Q(\result[0]

skyl130_ fd sc_hd dfxtp 1 \result[1l]$ DFF P_ (.CLK(clk), .D(_0), .Q(\result[1l]

skyl130_fd sc_hd_ dfxtp 1 \sum$ DFF P_ (.CLK(clk), .D(\result[O0]), .Q(sum));
endmodule

)
)

) ;
)i

Gate-level Netlist Implementation
= “Structural” Verilog

Problem

* Given
* |nitial design
* Design constraints
* Timing
* Power
* Area
* Target technology libraries

* Produce
* Optimal gate-level netlist that meets design constraints

Very hard optimization problem!

=
usp Kahng ECE 260C SP25

Adder Choices

Area vs. delay tradeoff for different adders with varying bit widths

Comb adder tradeoff (sky130hd)

lu; -

Area

4]

S

“ripple-carry ffa cells only®
“Brent-Kung /structural ABC*
"Kogge-Stone /structural ABC"
"Han-Carlson fstructural ABC™
"Sklansky /structural ABC"

102

=
usp Kahng ECE 260C SP25

10°

Delay

Slide Courtesy of Martin Poviser and Emil Tywoniak at YosysHQ

Combinational Logic Synthesis

2-level
Logic opt

~ tech multilevel
independent Logic opt

tech
dependent

Slide courtesy of Devadas, et. al

=
usp Kahng ECE 260C SP25

Boolean Functions

fix): B"— B

B ={0, 1}, x = (X4, Xy, ..., X,)

® X4, Xy, ... @re variables

°* X4, X1, X9, Xo, ... are literals

 each vertex of B" is mapped to 0 or 1

* the onset of fis a set of input values for which f(
* the offset of fis a set of input values for which f(

=
usp Kahng ECE 260C SP25

X) =1
x)=0

11

Logic Formulas

“truth table"

There are 2™ vertices in input space B"

There are 22" distinct logic functions. Each sub-
set of vertices is a distinct logic function: fl C B™
There are oo number of logic formulas

f x+y

Yy + 2y + Ty

rT+ 27+ y

(x+) +79)+ 7y

SYNTHESIS = Find the "best” formula (or "representation”)

13:3 Kahng ECE 260C SP25 Slide courtesy of Devadas, et. al 12

Logic Representation

* Sum of products (SOP): F=ab + cd
* Product of sums (POS): F = (a+c)(a+d)(b+c)(b+d)
* Truth Table (TT)

[Fofofofafofefefafelelelalalalalt
co o0 o0 O1 OO0 0o Oo1 10 10 10 10 11 11 11 11

ab 00
cd OO O 10 11 0O O 10 11 OO0 O 10 11 00 O01 10 11

* Binary decision diagram (BDD)
* Logic Network (LN)

* And-inverter Graph (AlIG) &
(a] [b] [c] [d]

A

+ Slide Courtesy of Alan Mischenko

=
usp Kahng ECE 260C SP25

13

Which Representation and Which Optimization?

Representation

Optimization

Small <=16 Truth Table (TT)
Sum of Products (SOP) Minimize number of products or literals Espresso
+ abis betterthan abc
+ abis betterthan abc + abc’
Medium 16-100 Binary Decision Diagrams (BDD) Minimize number of nodes or widths SIS
Logic Network (LG) Minimize “area” or levels VIS, MVSIS
And-inverter Graph (AIG) Minimize number of nodes or levels ABC
Large >100 And-inverter Graph (AIG) Minimize number of nodes or levels ABC
ab ab (>.d) = ac Y + c(a'd’) =
o0 01 11 10 F(a,b.C‘d:l:ab+d(ac‘+bc] 00 01 11 10 F(a,b,c S, ?L itik o (ada)
oo o 1o /{{jk\ ofo]o EIEJ /g\
01 0 [W W] p B nodes 01)jo0]o0 _ i O 7 nodes
1M1]1 0 [1 W] 0 \’}) 1m0 I ’ | 0 3 levels
4 level ;
10|00l o ({ /c\ oes 1ol o [laJf J]o c \l)}}\d A}d =

a ¢«

» Slide Courtesy of Alan Mischenko

=2 Kahng ECE 260C SP25 14

Historical Perspective

Problem Size ABC
100000
SIS, VIS,
MVSIS
100
Espresso,
50 MIS, SIS
16

1950-1970 1980 1990 2000 Time

Slide Courtesy of Alan Mischenko

=
ucsp Kahng ECE 260C SP25 15

Outline

* Introduction

* Multi-level Logic Synthesis
* Classical
* Contemporary

* Technology Mapping

* Classical
e Contemporary

=
usp Kahng ECE 260C SP25

16

Two-level Logic Synthesis Problem

* Given an arbitrary logic function in two-level form, produce a
smaller representation.

* For sum-of-products (SOP) implementation on PLAs

(programmable logic arrays), fewer product terms and fewer
Inputs to each product term mean smaller area.

I1—§°
O1=M12+11"12’ 'Z'tg.—ﬁ »

02=11"12°

O1

LE;,__ Kahng ECE 260C SP25 17

Sum-of-products (SOP)

* A function can be represented by a sum of cubes (products):
e f=ab +ac+bc

* Since each cube is a product of literals, this is a “sum of
products” representation

* A SOP can be thought of as a set of cubes F
* F={ab, ac, bc}=C

* A set of cubes that represents f is called a cover of f.
* F={ab, ac, bc} is a cover of f =ab + ac + bc.

=
usp Kahng ECE 260C SP25

18

Prime Cover

* A cube is prime if there is no other cube that contains it
* (for example, b c is not a prime but b is)

* A cover is prime iff all of its cubes are prime

® Pad

o o

: .
=

d
—_—

=
usp Kahng ECE 260C SP25

Irredundant Cube

* A cube c of a cover C is irredundant if C fails to be a cover if ¢
is dropped from C

* A cover is irredundant iff all its cubes are irredundant (for

example, F=ab+ac+bc)
o Wad

vl I WA
/

v
S S

=
usp Kahng ECE 260C SP25

20

Quine-McCluskey Method

* We want to find a minimum prime and irredundant cover for a
given function.

* Prime cover leads to min number of inputs to each product term.
* Min irredundant cover leads to min number of product terms.
* Quine-McCluskey (QM) method (1960’s) finds a minimum
prime and irredundant cover.
e Step 1: List all minterms of on-set: O(2*n) n = #inputs
e Step 2: Find all primes: O(3”n) n = #inputs
e Step 3: Construct minterms vs primes table

* Step 4: Find a min set of primes that covers all the minterms: O(2*m) m =
#primes

LE:} Kahng ECE 260C SP25 21

QM Example

eF=abc+ab c+ab c+tabc+abc
* Find a minimum set of primes that covers all the minterms
“Minimum column covering problem”

|
:E’cc | X | /‘ //‘
5 .34

/ /

Essential primes

X

X
X

X

LE;,__ Kahng ECE 260C SP25 22

ESPRESSO - Heuristic Minimizer

* Quine-McCluskey gives a minimum solution but is only good
for functions with small number of inputs (< 10)

* ESPRESSO is a heuristic two-level minimizer that finds a
“minimal” solution
ESPRESSO(F) {
do {
reduce(F);
expand(F);
irredundant(F);
} while (fewer terms in F);
verfiy(F);
}

=
usp Kahng ECE 260C SP25

23

ESPRESSO ILLUSTRATED

o

o

/.-

/0

¢

Wa

&
Wai

&
4

[
< ‘/
rredundant
/0

Reduce>

Outline

* Introduction
* Two-level Logic Synthesis

* Contemporary

* Technology Mapping
* Classical
e Contemporary

=
usp Kahng ECE 260C SP25

25

Multi-level Logic Synthesis

* Two-level logic synthesis is effective and mature

* Two-level logic synthesis is directly applicable to PLAs and
PLDs

But...

* There are many functions that are too expensive to implement
in two-level forms (too many product terms!)

* Two-level implementation constrains layout (AND-plane, OR-
plane)
* Rule of thumb:

* Two-level logic is good for control logic
* Multi-level logic is good for datapath or random logic

Lg} Kahng ECE 260C SP25 26

Multi-level Logic Synthesis Problem

* Given
* Initial logic network

* Design constraints
* Arrival times, required times, power consumption, noise immunity, etc...

* Target technology libraries

* Produce

* a minimum “cost” netlist consisting of the gates from the target libraries
such that design constraints are satisfied

LE;,__ Kahng ECE 260C SP25 27

Modern Approach to Logic Optimization

* Divide logic optimization into two subproblems:

» Technology-independent optimization
 determine overall logic structure
 estimate costs (mostly) independent of technology
« simplified cost modeling
* Technology-dependent optimization (technology mapping)
* binding onto the gates in the library
* detailed technology-specific cost model

* Orchestration of various optimization/transformation techniques for each
subproblem

LEI',__ Kahng ECE 260C SP25 Slide courtesy of Keutzer 28

Network Representation

* Logic Network:

Az

,\b

xl1 x2 Xx3

=
usp Kahng ECE 260C SP25

yl =x1x2
y2 =x3’

y3=y1y2
Z=y3 +x3

29

Node Representation: Sum of Products (SOP)

* Example:
abc’+a’bd+b’d’+b’e’f (sum of cubes)

* Advantages:
* easy to manipulate and minimize
° many algorithms available (e.g. AND, OR, TAUTOLOGY)
* two-level theory applies

* Disadvantages:

* Not representative of logic complexity. For example,
* f=ad+ae+bd+be+cd+ce
e f=a’b'c’'+d’e’
* These differ in their implementation by an inverter.

° hence not easy to estimate logic; difficult to estimate progress during logic
manipulation

13) Kahng ECE 260C SP25 30

Technology-Independent Optimization

* Technology-independent optimization is a bag of tricks:
* Two-level minimization (also called simplify)
* Constant propagation (also called sweep)
f=ab+c;b=1=>f=a+c

* Decomposition (single function)

f=abc+abd+a’c’d’+b’c’d’ =>f=xy +xy; x=ab; y=c+d
* Extraction (multiple functions)

f=(Jcd+e g =()e’ h=cde

U
f=xy+e g=xe’ h=ye y =cd

LE;) Kahng ECE 260C SP25 31

More Technology-Independent Optimization

* More technology-independent optimization tricks:

e Substitution
g =atb f=atbc

U
f=g(atc)
* Collapsing (also called elimination)
f=ga+g’b g =c+d
U
f=ac+ad+bc’d’ g =c+d

* Factoring (series-parallel decomposition)
f = ac+tad+bc+bd+e => f = (a+b)(c+d)+e

=
usp Kahng ECE 260C SP25

32

Outline

* |Introduction
* Two-level Logic Synthesis
* Multi-level Logic Synthesis

* Classical

* Technology Mapping
* Classical
e Contemporary

=
usp Kahng ECE 260C SP25

33

Motivation for Contemporary Synthesis

® Classical combinational tech-independent synthesis
® suboptimal
®* complicated
® hard to implement
* slow

®* What if we replace it with something that is
® suboptimal, but
® simple
® easy to implement
* fast

Slide Courtesy of Alan Mischenko & Bob Brayton

=
usp Kahng ECE 260C SP25

And-Inverter Graph (AIG)

Every node is two-input AND
® Dotted line denotes inversion

Primary inputs and register
outputs at bottom

®* Primary outputs and register T«;
inputs at top |

@ L
functions |

-~
8]

(

.

Can represent any set of logic (2 Q

G0 G6_out G5_out

Slide Courtesy of Alan Mischenko & Bob Brayton

=
usp Kahng ECE 260C SP25

35

Logic Network vs. AlIG

Logic network in SIS Equivalent AlIG in ABC

y
X
a b c d e

AlG is a logic network of 2-input AND nodes and
inverters (dotted lines)

E} Kahng ECE 260C SP25 Slide Courtesy of Alan Mischenko & Bob Brayton 36

One AIG Node — Many Cuts

Combinational AlG AIG can be used to compute many cuts
f for each node
o Each cut in AlG represents a different SIS node
o No a priori fixed boundaries

P o Implies that AIG manipulation with cuts is equivalent to
working on many logic networks at the same time

E‘: Kahng ECE 260C SP25 Slide Courtesy of Alan Mischenko & Bob Brayton .

k-Feasible Cuts

® Definition A set of nodes C is a k-feasible cut for a node n if

(1) all the paths from the primary inputs (Pls) to node n pass through at least one
node in C,

(2) the number of nodes in C does not exceed k

‘\ " 3-feasible cuts of k | Average number of cuts
C1={p, k} per node
- - 9 ’ C2={a b s} 4 0
5 20
" Not 3-feasible cuts of n: 6 80
— 7 150

”’
‘ C3={p, b, c}

Pls: a, b, ¢ C4={a b s c}

Slide Courtesy of Alan Mischenko & Bob Brayton

=
usp Kahng ECE 260C SP25

AIG Structural Hashing

* Leads to a compact

representation
* |s applied during AlG A
construction Without hashing

* Propagates constants
* Makes each node structurally unique

ab
With hashing '

Slide Courtesy of Alan Mischenko & Bob Brayton

N
uesp Kahng ECE 260C SP25 39

AlG Resubstitution

Resubstitution considers a In a logic network and
expresses it using a different set of fanins

X X

=
usp Kahng ECE 260C SP25

40

AIG “speedup”

Timing Criticality
* Critical nodes
* Used by many traditional algorithms Primary outputs

* Critical edges I
* Used by ABC /

* ABC pre-computes critical edges of
critical nodes

* Reduces computation

4

I,
‘3

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ 2
\
\
\
\
\

* An edge between critical nodes may
not be critical

* See illustration: edge 1—-3 Primary inputs

=
s Kahng ECE 260C SP25 41

Delay-Oriented Restructuring

- Using traditional MUX-restructuring
— AKA generalized select transform

N

F()() F()1 FIO Fll

HERRN [TTT TTT1 [TTT TTT1
X)y

x and y are the critical edge inputs

LE;,__ Kahng ECE 260C SP25 42

AIG Rewriting

® Pre-computing subgraphs
® Consider function f = abc

" Rewriting subgraphs

A Rewriting node A A

Subgraph 1 Subgraph 2 Subgraph 3 / \\\\ / /,’ N

Subgraph 2 Subgraph 1

In both cases 1 node is saved
Slide Courtesy of Alan Mischenko & Bob Brayton

=
ucsp Kahng ECE 260C SP25 43

Combinational Synthesis By AIG Rewriting

iterate 10 times {
for each AIG node {
for each k-cut
derive node output as function of cut variables
if (smaller AlIG is in the pre-computed library)
rewrite using improved AlG structure

Note: each AlG node has, on average, 5 4-cuts compared
to a SIS node with only 1 cut

Rewriting at a node can be very fast — using hash-table
lookups, truth table manipulation, disjoint decompaosition

% Slide Courtesy of Alan Mischenko & Bob Brayton
ucsD Kahng ECE 260C SP25 44

Experimental Results (MCNC)

1.00 [1.00] 1.00| 1.00 0.00
0.871 096 093 0.98 1.00
091 1.10}] 093] 1.03 7.12

094 099] 098 | 0.97 ~100.00
094 090 098 | 0.94 ~1000.00

A. Mischenko, S. Chatterjee, R. Brayton, “DAC-Aware AlIG Rewriting: A Fresh Look at
Combinational Logic Synthesis”, DAC 2006

Slide Courtesy of Alan Mischenko & Bob Brayton 45

=
usp Kahng ECE 260C SP25

Outline

* |Introduction
* Two-level Logic Synthesis
* Multi-level Logic Synthesis

* Classical
* Contemporary

e Contemporary

=
usp Kahng ECE 260C SP25

46

Technology-Dependent Optimization

Technology-dependent optimization consists of

* Technology mapping: maps logic network to a set of gates from
technology libraries

* Local transformations
* Discrete resizing
* Cloning
* Fanout optimization (buffering)
* Logic restructuring

Slide courtesy of Keutzer

LE;,__ Kahng ECE 260C SP25 47

Classical Technology Mapping

Input
* Technology independent, optimized logic network
* Description of the gates in the library with their cost

Output

* Netlist of gates (from library) which minimizes total cost

General Approach
* Construct a subject DAG for the network
* Represent each gate in the target library by pattern DAG’s

* Find an optimal-cost covering of subject DAG using the collection of
pattern DAG’s

e Canonical form: 2-input NAND gates and inverters

DAGON: Technology Binding and Local Optimization by DAG Matching
(K. Keutzner, 1987)

Lg) Kahng ECE 260C SP25 48

DAG Covering

* DAG covering is an NP-hard problem

* Solve the sub-problem optimally
* Partition DAG into a forest of trees
* Solve each tree optimally using tree covering
e Stitch trees back together

i

Slide courtesy of Keutzer

=
usp Kahng ECE 260C SP25

49

Tree Covering Algorithm

* Transform netlist and libraries into canonical forms
e 2-input NANDs and inverters

* Visit each node in BFS from inputs to outputs

* Find all candidate matches at each node N
* Match is found by comparing topology only (no need to compare functions)

* Find the optimal match at N by computing the new cost
* New cost = cost of match at node N + sum of costs for matches at children of N

e Store the optimal match at node N with cost
* Optimal solution is guaranteed if cost is area
* Complexity = O(n) where n is the number of nodes in netlist

Lg} Kahng ECE 260C SP25 50

Tree Covering Example

Find an "optimal” (in area, delay, power) mapping of this circuit

DD—DO-—I_D:

B

into the technology library (simple example below)

> 1 > I r DQ)BD’

E} Kahng ECE 260C SP25 Slide courtesy of Keutzer 51

Library Gates

Element/Area Cost Tree Representation (normal form)

INVERTER 2 > {>o
NAND2 3] » 4 »

NAND3 a9 > }D""—j
, Do o

NAND4 5

=)
D,
1 o

E} Kahng ECE 260C SP25 Slide courtesy of Keutzer

52

Trivial Covering

: subject DAG
3}}“3 Do
1o ' P>
s >
7 NAND2 (3) = 21
5 INV (2)= 10

Area cost 31

Can we do better with tree covering?

E,__ Kahng ECE 260C SP25 Slide courtesy of Keutzer

Optimal Covering

ND2
- AOI21
> ND3
e e
INV | —o- [1 >—o—
1 >
[D>
LDy,
ND3 “'subject tree”
INV 2
ND2 3
2 ND3 8
AOI21 4

Area cost 17

:g;_ Kahng ECE 260C SP25 Slide courtesy of Keutzer 54

Summary of Classical Technology Mapping

* DAG covering formulation

* Separated library issues from mapping algorithm (can’t do this with rule-
based systems)

* Tree covering approximation
* Very efficient (linear time)

* Applicable to wide range of libraries (std cells, gate arrays) and
technologies (FPGAs, CPLDs)

* Weaknesses
* Problems with DAG patterns (Multiplexors, full adders, ...)
* Large input gates lead to many patterns

13) Kahng ECE 260C SP25 55

Outline

* |Introduction
* Two-level Logic Synthesis
* Multi-level Logic Synthesis

* Classical
* Contemporary

* Technology Mapping

* Classical

=
usp Kahng ECE 260C SP25

56

AlIG Technology Mapping

Input: A logic network (And-Inverter Output: A netlist of K-LUTs implementing AIG and
Graph) optimizing some cost function

Technology
Mapping

The subject graph The mapped netlist

=
ucsp Kahng ECE 260C SP25 57

Sample ABC Scripts

Area Optimization Script

Command Function
strash transform combo logic into AIG by "structural hashing"
dch similar to &dch
decompose to AND-INV and tech map subject to timing constraints
map —B 0.9 perform std cell mapping of the current network using 2-level logic minimization approach

(Boolean matching + resynthesis)
-B 0.9 delay multiplier to bias gate selection (0.0= area mode, 1.0 =delay mode)

topo rearrange nodes to be in topological order for STA
stime —¢ perform STA using liberty library
buffer —c perform buffering and sizing on mapped network
U2 =6 selectively increase gate sizes on the critical path
dnsize —c

selectively decrease gate sizes while maintaining delay

Delay Optimization Script

Command Repeat Function
&get-n convert current network into GIA (generalized-iterative-and)
&st X1 perform structural tech map by considering physical layout
&dch decompose to AND-INV and tech map subject to timing constraints
&nf perform tech mapping of the network using network flow algorithm
&st perform structural tech map by considering physical layout
&syn2 perform secondary delay/area opt subject to timing constraints
&if-g-K6 X5 perform FPGA tech map based on priority cuts
&synch2 perform 2nd stage sequential opt including retiming and clock gating
&nf perform tech mapping of the network using network flow algorithm
&put put current network into memory buffer
buffer —c perform buffering and sizing on mapped network
topo X1 rearrange nodes to be in topological order for STA
stime —c perform STA using liberty library
upsize —c selectively increase gate sizes on the critical path
% dnsize —¢ selectively decrease gate sizes while maintaining delay

usp Kahng ECE 260C SP25

Comparison of Classical vs. AlG Synthesis

- Boolean network * AIG network 3
. Network manipulation « DAG-aware AIG rewriting (Boolean)
(algebraic) — Several related algorithms
i o * Rewriting
— Elimination . Refactoring
— Factoring/Decomposition Balancing
— Speedup « Speedup
« Node minimization * Node minimization
— Espresso — Boolean decomposition
: : — Don't ted usi
~ gg?) t cares computed using si?nnula%?gﬁséggrg%Te dsing
R Sb - — Resubstitution with don’t cares
— Resubstitution
* Technology mapping « Technology mapping
— Tree based — Cut based with choice nodes

Slide Courtesy of Alan Mischenko & Bob Brayton

=
ucsp Kahng ECE 260C SP25 59

Thank You

60

	Slide 1: ECE 260C Logic Synthesis
	Slide 2: Bio
	Slide 3: Bob Brayton’s Favorite Quote
	Slide 4: Outline
	Slide 5: Why Logic Synthesis?
	Slide 6: Design Flow
	Slide 7: Synthesis Example (Yosys + ABC)
	Slide 8: Problem
	Slide 9: Adder Choices
	Slide 10: Combinational Logic Synthesis
	Slide 11: Boolean Functions
	Slide 12: Logic Formulas
	Slide 13: Logic Representation
	Slide 14: Which Representation and Which Optimization?
	Slide 15: Historical Perspective
	Slide 16: Outline
	Slide 17: Two-level Logic Synthesis Problem
	Slide 18: Sum-of-products (SOP)
	Slide 19: Prime Cover
	Slide 20: Irredundant Cube
	Slide 21: Quine-McCluskey Method
	Slide 22: QM Example
	Slide 23: ESPRESSO – Heuristic Minimizer
	Slide 24: ESPRESSO ILLUSTRATED
	Slide 25: Outline
	Slide 26: Multi-level Logic Synthesis
	Slide 27: Multi-level Logic Synthesis Problem
	Slide 28: Modern Approach to Logic Optimization
	Slide 29: Network Representation
	Slide 30: Node Representation: Sum of Products (SOP)
	Slide 31: Technology-Independent Optimization
	Slide 32: More Technology-Independent Optimization
	Slide 33: Outline
	Slide 34: Motivation for Contemporary Synthesis
	Slide 35: And-Inverter Graph (AIG)
	Slide 36: Logic Network vs. AIG
	Slide 37: One AIG Node – Many Cuts
	Slide 38: k-Feasible Cuts
	Slide 39: AIG Structural Hashing
	Slide 40: AIG Resubstitution
	Slide 41: AIG “speedup”
	Slide 42: Delay-Oriented Restructuring
	Slide 43: AIG Rewriting
	Slide 44: Combinational Synthesis By AIG Rewriting
	Slide 45: Experimental Results (MCNC)
	Slide 46: Outline
	Slide 47: Technology-Dependent Optimization
	Slide 48: Classical Technology Mapping
	Slide 49: DAG Covering
	Slide 50: Tree Covering Algorithm
	Slide 51: Tree Covering Example
	Slide 52: Library Gates
	Slide 53: Trivial Covering
	Slide 54: Optimal Covering
	Slide 55: Summary of Classical Technology Mapping
	Slide 56: Outline
	Slide 57: AIG Technology Mapping
	Slide 58: Sample ABC Scripts
	Slide 59: Comparison of Classical vs. AIG Synthesis
	Slide 60: Thank You

