
UCSD ece 260c.

Intro, Logistics and
OpenROAD

Prof. Andrew Kahng

UCSD ece 260c.

• This version of 260C will explore
emerging open-source VLSI (digital,
RTL-to-GDS) implementation
software, giving you a chance to
understand the internals of the tools
you use.

• Course materials will center on the
OpenROAD tool and the IHP130
open-source PDK.

2

ECE 260C A00, SP25: “VLSI Special Topics”

UCSD ece 260c.

• Explore the expanding field of Open-Source VLSI CAD Software
• Learn how to use OpenROAD and Yosys as an alternative to commercial

software like Cadence Innovus
• Learn how to apply complex scripting to achieve better results

• Take advantage of open-source by making deeper in-source changes
• Build design space exploration flows commonly demanded in industry

• Understand the internals and algorithms that drive implementation
• Apply learned methodologies in the context of System-on-Chip design
• Note: This is a brand-new class (!) with assumed prerequisites (!)

Intro & Syllabus 3

Scope

UCSD ece 260c.

• Lectures are Tues/Thurs from 5:00 pm to 6:20 pm in Center Hall 216
• Attendance is Mandatory. At the end of the lecture, you must complete Lecture

Participation in Canvas > Quizzes. This is 20% of your grade. Regrades available.
• The topics and lecturer for each lecture can be seen on the Course Schedule

• There are 5 labs and a Final Project
• Labs are 60% of your grade (12% each)
• The Final Project is 20% of your grade.

• Stay up to date on the Schedule and check Canvas Announcements !!!
• Canvas Home > Course Schedule
• Office Hours are also on Canvas
• Course staff: Andrew Kahng (instructor), Bodhi Pramanik (TA), Davit Markarian (volunteer)

Intro & Syllabus 4

Logistics

UCSD ece 260c.

• Labs are assigned at the end of lecture – Lab 0 today
• Check the Course Schedule for due dates.
• On the due date, they can be turned in as late as 2:59 AM with no penalty.

After, no submissions will be accepted.
• Regrades will be available.

• Your Final Project will be assigned in Week 5
• In a small team, you will improve upon an existing SoC
• More details will follow when assigned.

• This course has no final exam
• Instead, the Final Project is due on the assigned exam date at midnight.

• Please review the Syllabus on Canvas

Intro & Syllabus 5

Logistics Cont’d

UCSD ece 260c.

• EDA tools that satisfy the definition of open source
• Tim Ansell, Open Source 101, 2019

• Freely usable, freely modifiable, and shareable
• License permits free redistribution, creation of derived

works, and use by anyone for any purpose, in a
technology-neutral manner

• Transformative! à Linux, Android, RISC-V, TensorFlow, …
• Permissive licenses: BSD, MIT, Apache2.0 …
• Share-alike / “copyleft”: GPL-2 or GPL-3 …

6

What is Open-Source EDA ?

https://j.mp/eri19-foss101
https://j.mp/eri19-foss101

UCSD ece 260c.

• Can you share your Tcl script with another user?
• Can you share code or write a tool that reads the same

command syntax?
• Can you share the tool’s output (gds, logfile, …)
• Can you compare it with another tool (“benchmarking”)?
• Can you use the tool output to make a chip startup?
• Can you share any of the tool’s documentation?
• Can you upload the user guide or a logfile into ChatGPT?
• …

7

Closed-Source EDA (e.g., in ECE 260B)

“A Mixed Open-Source and Proprietary
EDA Commons for Education and
Prototyping”, ICCAD-2022. (.pdf)

(No! See the EULA that your university executed.)

https://dl.acm.org/doi/pdf/10.1145/3508352.3561378

UCSD ece 260c.

About OpenROAD

 “Foundations and Realization of Open, Accessible Design”

UCSD ece 260c.

The Crisis of Hardware Design
• ASIC design in advanced nodes: barriers of Cost, Expertise, Risk

• Innovators can’t evaluate PPAC metrics of their design ideas

A. Olofsson, ISPD-2018

UCSD ece 260c.

ASIC Design with Proprietary EDA: Need $$$, Experts
• Very sophisticated tools with 1000’s of commands

• Tool supplier focus: performance, power, area

• Large teams of expert users, many manual steps

• Long project schedules

• Significant project risks

UCSD ece 260c.

OpenROAD: June 2018 – December 2023

• “Foundations and Realization of Open, Accessible Design”
• Funded by U.S. DARPA as part of the Electronics Resurgence

Initiative (ERI). (UCSD = prime contractor)

•Mission: Democratize IC Design, Boost HW & EDA Innovation
• Revitalize EDA
• Contract: Deliver an Open-Source, RTL-to-GDS EDA system
• 24-hour, no-human-in-loop, tapeout-clean layout in FinFET nodes

https://precisioninno.com/

https://precisioninno.com/

UCSD ece 260c.

OpenROAD: No Humans, 24 Hours
• FOCUS: Ease of use and runtime

• Directly attack the crises of design and innovation
• Schedule barrier: RTL-to-GDS in 24 hours
• Expertise barrier: No-human-in-loop, tapeout GDS
• Cost barrier: Open source (and, runs in 24 hours)

• Unleash system innovation and design innovation
• Enable tool customization to system, application needs

UCSD ece 260c.

RTL-to-GDS Chip Implementation Flow

UCSD ece 260c.

IO Placement (Example: foundry 12nm RISC core, “coyote”)

UCSD ece 260c.

Macro Placement

UCSD ece 260c.

Tapcell (Well Tap) Insertion

UCSD ece 260c.

Power Delivery Network

UCSD ece 260c.

Power Delivery Network – Zoom-In

UCSD ece 260c.

Global Placement

UCSD ece 260c.

Global Placement

UCSD ece 260c.

Global Placement w/Partially Expanded Hierarchy

UCSD ece 260c.

Global Placement Zoom-In

UCSD ece 260c.

Sizing and Buffering (electrical rules)

UCSD ece 260c.

(Legalized) Detailed Placement Zoom-In

UCSD ece 260c.

Clock Tree Synthesis

UCSD ece 260c.

Hold Fix Buffers

UCSD ece 260c.

Congestion Map Is this final placement routable?

UCSD ece 260c.

Final (Detailed) Routing

UCSD ece 260c.

Final (Detailed) Routing, With PDN Shown

More: https://vlsicad.ucsd.edu
https://theopenroadproject.org

https://vlsicad.ucsd.edu/
https://theopenroadproject.org/

UCSD ece 260c.

Recent Status

•Functionality: 800+ tapeouts at
180-12nm
•IHP130 recently supported à this class

•Community: OpenROAD app has
>28K commits from 130+
contributors

•Education and Workforce: from
high school to graduate level,
extension

•Researchers
•Small R&D teams, startups

UCSD ece 260c.

Further notes: link link link

Industrial Strength Incremental Architecture: Built to Last

https://github.com/The-OpenROAD-Project/Birds-of-a-Feather-Open-Source-Academic-EDA-Software/wiki/DAC-2019-Birds-of-a-Feather:-Open-Source-Academic-EDA-Software
https://vlsicad.ucsd.edu/Publications/Conferences/374/c374.pdf
https://vlsicad.ucsd.edu/Publications/Conferences/374/c374.pptx

UCSD ece 260c.

OpenROAD Availability https://openroad.readthedocs.io/en/latest/main/README.html

• The Project on GitHub
• https://github.com/The-OpenROAD-Project

• The Flow
• Automated full flow, built using tool components that are created for automation
• https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts

• The Top-level Application
• An integrated EDA tool focused on full automation
• https://github.com/The-OpenROAD-Project/OpenROAD

• More!
• Documentation: https://openroad.readthedocs.io/en/latest/main/README.html
• Slack: https://skywater-pdk.slack.com/archives/C0161A4A59V
• OpenTapeout video:

https://www.youtube.com/watch?v=wvPZREaP7E0&t=2652s

BUT: What does OpenROAD
(and, OS EDA) bring to the table?

https://openroad.readthedocs.io/en/latest/main/README.html
https://github.com/The-OpenROAD-Project
https://github.com/The-OpenROAD-Project
https://github.com/The-OpenROAD-Project
https://github.com/The-OpenROAD-Project
https://github.com/The-OpenROAD-Project
https://github.com/The-OpenROAD-Project
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://openroad.readthedocs.io/en/latest/main/README.html
https://skywater-pdk.slack.com/archives/C0161A4A59V
https://skywater-pdk.slack.com/archives/C0161A4A59V
https://skywater-pdk.slack.com/archives/C0161A4A59V
https://www.youtube.com/watch?v=wvPZREaP7E0&t=2652s

UCSD ece 260c.

Open-source EDA Enables AI/ML for EDA, IC Design

What do designers/users
work with?

What can they also
work with?

Thanks to: Prof. Vidya Chhabria, ASU

UCSD ece 260c.

OpenROAD as an ML for EDA “Playground”

Thanks to: Prof. Vidya Chhabria, ASU

UCSD ece 260c.

Nvidia CircuitOps Data Format
• ML-friendly data
 representation format

• Intermediate representation of
EDA data as labeled property
graphs (LPG) represented as
deep graph library (DGL) object
or graph tool which integrates
easily with PyTorch

• Each node has associated
relational tables that store node
features, e.g., pin slack,
transition, etc.

V. A. Chhabria, W. Jiang, A. B. Kahng, R. Liang, H. Ren, S. S. Sapatnekar and B.-Y. Wu, "OpenROAD and CircuitOps:
Infrastructure for ML EDA Research and Education", (.pdf), Proc. IEEE VLSI Test Symposium, April 2024.

Thanks to: Prof. Vidya Chhabria, ASU

https://vlsicad.ucsd.edu/Publications/Conferences/407/c407.pdf

UCSD ece 260c.

ML-centric APIs
1) all_slacks = ord.get_property(list_pins, “rise_slack”)
 where all_slacks is a numpy array

2) graph_design = ord.get_netlist(list_insts, properties)
where graph_design is a DGL graph object where all nodes are instances in
list_insts annotated with properties as node/edge features

3) cong_map = ord.get_map(map=congestion, resolution=1um)
where cong_map is a 2D numpy array representing a heat map

Examples of image-based
ML data extraction

Congestion

DRC violations

IR drop

Examples of graph-based data
extraction: node, edge features

Thanks to: Prof. Vidya Chhabria, ASU

UCSD ece 260c.

LLM-based EDA Agent: ChatEDA

Workflow
1. (user) natural language input

2. (ChatEDA) task planning
3. (ChatEDA) script generation
4. (OpenROAD) task execution

#1. User Requirement
For the design named “aes” on the platform “asap7”, please perform synthesis with a
clock period of 5, followed by floorplan with a core utilization of 70%. Then, execute
placement with a density of 0.8. Next, proceed with CTS to fix 40% of violating paths.
Finally, evaluate the performance after routing using “power” metric.

Thanks to: Prof. Bei Yu, CUHK – see https://arxiv.org/pdf/2308.10204.pdf

https://arxiv.org/pdf/2308.10204.pdf

UCSD ece 260c.

“No-Human-in-Loop” Flow Parameter Autotuning
• Automatic, iterative tuning to improve user-

defined score within a given hyperparameter
range space

• Interface: Python packages Ray/Tune

• Algorithms: HyperOpt, PBT, Optuna,
Nevergrad, Ax, random search

• Advantages:
• No need for pre-existing big data
• Fewer trials needed than with, e.g., grid search
• Powerful parallelization management: core/thread

management, external server usage, visualization
• Good outcomes within reasonable schedule,

compute budgets

UCSD ece 260c.

• No-Human-in-Loop

Parameter config

AutoTuner
(Ray/Tune)

The RTL-to-GDS
process is
automatically
executed in parallel
by Ray/Tune API

Best known
parameter set

option 1 option 2

No given
parameter set

Searching algorithm
(switchable)

input parameter
name, range,
step, type

Ray/Tune options
#trials, #cores, etc.

Evaluation
objective function

Pick hyperparameter sets
based on config / results

Parse picked set to form
RTL-to-GDS tool runscript

Run runscript

Collect METRICS2.1 json

Evaluate results

parallel execution

Flow Parameter AutoTuner – Architecture

UCSD ece 260c.

• Tech: Skywater 130nm HD
• Design: ibex
• Tested Algorithms

• HyperOpt
• Hyperparameter config <name, type, minmax, step>

• When type is int and step = 0, it means constant value
• When type is float and step = 0, it means continuous range

Assuming full factorial
combinations,
1,058,298,150
= #possible combinations!

Hyperparameter Space: SkyWater 130HD, ibex

UCSD ece 260c.

• GUI integration with TensorBoard
• Score results versus Wall Time

Default flow score = 1,174,346
Our Best Score = 855,373
(370 trials in total 500 #trials)
(less is better)

User-defined
Score

Wall Time

Dots = trials

Improvement
WL 1003801um → 843258um (-16%)
Effective CP 20.935ns → 16.185 ns (-23%)
Total power 0.024 W→ 0.0133 W (-45%)

TensorBoard Visualization: SkyWater 130HD, ibex

UCSD ece 260c.

High-quality Engines: Hier-RTLMP Macro Placer

TABLA01 AI accelerator
in GF 12nm, 760 macros

Hier-RTLMP (postRoute) Comm Macro Placer (postRoute)
Macro Placer Std Cell Area

 (𝒎𝒎𝟐)
Power
(mW)

WNS
 (ns)

TNS
 (ns)

Hier-RTLMP 0.160 640 -0.085 -0.417

Comm 0.165 689 -0.370 -92.246

OpenROAD tool GitHub (/src/mpl2) , arXiv

https://github.com/The-OpenROAD-Project/OpenROAD/tree/master/src/mpl2
https://github.com/The-OpenROAD-Project/OpenROAD/tree/master/src/mpl2
https://github.com/The-OpenROAD-Project/OpenROAD/tree/master/src/mpl2
https://arxiv.org/abs/2304.11761

UCSD ece 260c.

High-quality Engines: GPU-Accelerated Global Placer
 Runtime (s) HPWL (m) eGR WL (m)

RePlAce 65381 325 404
Comm 24561 414 478
DG-RePlAce 1808 327 407

Commercial DG-RePlAceOpenROAD RePlAce

Testcase: MemPool Cluster, ETH Zurich (9.5M cells, 1296 macros in NG45)
2.79% H + 2.04% V 1.51% H + 1.01% V 2.37% H + 1.68% V

UCSD ece 260c.

“METRICS” (DAC00, ISQED01)

• METRICS 1.0 (1999; DAC00, ISQED01)
• “Measure to Improve” http://vlsicad.ucsd.edu/GSRC/metrics

• METRICS 2.0 (WOSET-2018) was proposed as an update of METRICS 1.0
• METRICS2.1 is proposed as a standard, with a concrete realization in OpenROAD

http://vlsicad.ucsd.edu/GSRC/metrics
https://woset-workshop.github.io/PDFs/2018/a21.pdf
https://woset-workshop.github.io/PDFs/2018/a21.pdf
https://woset-workshop.github.io/PDFs/2018/a21.pdf
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML

UCSD ece 260c.

METRICS2.1: Standard Naming ! https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML

• Problem: “Tower of Babel” (names, formats that are all different and
proprietary)

• Solution: “METRICS”
• General and extensible
• Syntax and semantics to support future addition of new metrics

• No ambiguity!!!
• Any desired measurement must map to a unique METRICS2.1 metric
• Every METRICS2.1 metric must map to a unique interpretation as a measurement
• Two-way mapping is crucial to avoid future confusion

• Can also capture the same metric at different stages of the design flow

• Free, open and frictionless – agnostic to EDA provider

https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML

UCSD ece 260c.

METRICS2.1 Examples https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML

Sample metrics
Metric Description
timing__setup__wns Setup worst negative slack in the design

timing__setup__wns__clock:clk_a Setup worst negative slack for clock “clk_a” in
the design

timing__setup__wns__analysis_view:s
low

Setup worst negative slack for analysis view
“slow”

power_total Total power consumption

power__leakage Total leakage power

power__leakage__clock Total leakage power in the clock network

Many applications: data for machine learning, CI/CD infrastructure for software quality, …

https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML

UCSD ece 260c.

A Comment on SP25 Classes
• ECE 260C (Special Topics): focus is on

RTL-to-GDS implementation with open-source
enablement (EDA, PDK, Design)
• See and modify what is inside the EDA tool;

use OS lever to improve outcomes
• CSE 241A (cross-listed with ECE 260B):

“classic” 260B/241A with commercial EDA tools
• “Job-readiness” in ASIC PD + what/how tools think

inside, with more CSE flavor
• CSE 291 H00 “Topics in ML for Chip Design”:

AI/ML in EDA and IC Design
• Must use open source to explore AI/ML ! à similar

tool, flow context as 260C

ECE 260C CSE 241A

CSE 291

Open
Source

IC PD

AI/ML in EDA

Closed
Source

PPAC-
driven

